Connect with us

Green

Visualizing the Human Impact on the Ocean Economy

Published

on

Human Impact and the Ocean Economy

Visualizing the Human Impact on our Ocean Economy

When you think of economic output, it’s likely the ocean isn’t the first entity that comes to mind. But from facilitating international trade to regulating the climate, the “blue economy” contributes significant value in both tangible and intangible ways.

The sustainable use of the ocean and its resources for economic development and livelihoods have such far-reaching effects, that its protection is a significant goal of the United Nations, as well as for many other countries and organizations throughout the world.

However, these vital ocean assets are in danger of sinking quickly. Ahead of World Oceans Day on June 8, 2020, we look at the total value of assets that come from our ocean, and how various human activities are affecting these resources.

Global Ocean Asset Value

Economic value from all the oceans is measured both by their direct output, as well as any indirect impacts they produce.

According to the World Wildlife Fund, these combined assets are valued at over $24 trillion. Here’s how they break down:

  • Direct Output: Marine fisheries, coral reefs, seagrass, and mangroves
    Total value: $6.9T
    Examples of direct output: Fishing, agriculture
  • Trade and Transport: Shipping lanes
    Total value: $5.2T
  • Adjacent Assets: Productive coastline, carbon absorption
    Total value: $7.8T, and $4.3T respectively
    Examples of services enabled: Tourism, education/conservation (such as jobs created)

In fact, the annual gross marine product of the oceans is comparable to the Gross Domestic Product (GDP) of countries, coming in at $2.5 trillion per year—making it the world’s eighth largest economy in country terms.

Unfortunately, experts warn that various human activities are endangering these ocean assets and their reliant ecosystems.

The Cumulative Human Impact on Oceans

An 11-year long scientific study tracked the global effect of multiple human activities across diverse marine environments. The researchers identified four main categories of stressors between 2003-2013.

  1. Climate change: Sea surface temperature, ocean acidification, and sea level rise
  2. Ocean: Shipping
  3. Land-based: Nutrient pollution, organic chemical pollution, direct human pollution, light pollution
  4. Fishing: Commercial and artisanal fishing, including trawling methods

Across the board, climate stressors were the most dominant drivers of change in a majority of marine environments. Similarly, pollution levels have also increased for many ecosystems.

Plastic pollution is especially damaging, as it continues to grow at unprecedented rates, with a significant amount ending up in the oceans. The World Economic Forum estimates that by 2050, there could be more plastic in the ocean than fish by weight.

Among the various marine environments, coral reefs, seagrasses, and mangroves proved to be most at-risk, experiencing the fastest increase in cumulative human impact. However, these are also the same ecosystems that we rely on for their direct economic output.

Overall, climate-induced declines in ocean health could cost the global economy $428 billion annually by 2050.

The Ocean Economy is in Hot Water

It can be difficult to truly understand the scale at which we rely on the ocean for climate regulation. The ocean is a major “carbon sink”, absorbing nearly 30% of the carbon emitted by human activity. But acidity levels and rising sea surface temperatures are changing its chemistry, and reducing its ability to dissolve CO₂.

According to the UN, ocean acidification has grown by 26% since pre-industrial times. At our current rates, it could rise to 100-150% by the end of the century. Overfishing is another urgent threat that shows no signs of slowing down, with sustainable fish stocks declining from 90% to 66.9% in just over 40 years.

To try and counteract these issues, this year’s virtual World Oceans Day is focused on “Innovation for a Sustainable Oceans” to discuss various solutions, including how the private sector can work with communities to maintain the blue economy. In addition, there’s a petition in place to urge world leaders to help protect 30% of the natural world by 2030.

Will our human activities continue to stress the ocean economy, or will we be able to positively reverse these trends in the years to come?

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Green

Which Countries are Mapping the Ocean Floor?

We know more about the surface of Mars than we do on the ocean floor. Which countries are mapping the ocean floor, and what’s still unknown?

Published

on

mapping the ocean floor

Which Countries are Mapping the Ocean Floor?

Our vast and complex planet is becoming less mysterious with each passing day.

Consider the following:

  • Thousands of satellites are now observing every facet of our planet
  • Around three-quarters of Earth’s land surface is now influenced by human activity
  • Aircraft-based LIDAR mapping is creating new models of the physical world in staggering detail

But, despite all of these impressive advances, our collective knowledge of the ocean floor still has some surprising blind spots.

Today’s unique map from cartographer Andrew Douglas-Clifford (aka The Map Kiwi) focuses on ocean territory instead of land, highlighting the vast areas of the ocean floor that remain unmapped. Which countries are exploring their offshore territory, and how much of the ocean floor still remains a mystery to us? Let’s dive in.

What Do We Know Right Now?

Today, we have a surprisingly incomplete picture of what lies beneath the waves. In fact, if you were to fly from Los Angeles to Sydney, the bulk of your journey would take place over territory that is mapped in only the broadest sense.

Most of what we know about the ocean floor’s topography was pieced together from gravity data gathered by satellites. While useful as a starting point, the resulting spatial resolution is about two square miles (5km). By comparison, topographic maps of Mars and Venus have a resolution that’s 50x more detailed.

As the map above clearly illustrates, only a few large pieces of the ocean have been mapped—and not surprisingly, many of these higher resolution portions lie along the world’s shipping lanes.

Another way to see this clear difference in resolution is through Google Maps:

As you can see above, these shipping lanes running through the Pacific Ocean have been mapped at a higher resolution that the surrounding ocean floor.

The Countries Mapping the Ocean Floor

The closer an area is to a population center, the higher the likelihood it has been mapped. That said, many countries still have a long way to go before they have a clear picture of their land beneath the waves.

Here is a snapshot of how far along countries are in their subsea mapping efforts:

Countries/territoriesSize of Exclusive Economic Zone* (EEZ)Percentage of EEZ mapped
Japan1,729,501 mi² (4,479,388 km²)97.7%
United Kingdom2,627,651 mi² (6,805,586 km²)90.6%
Norway920,922 mi² (2,385,178 km²)81.9%
New Zealand1,576,742 mi² (4,083,744 km²)74.0%
United States4,382,645 mi² (11,351,000 km²)69.9%
Australia3,283,933 mi² (8,505,348 km²)64.9%
Iceland291,121 mi² (754,000 km²)49.9%
South Africa592,874 mi² (1,535,538 km²)39.5%
Canada2,161,815 mi² (5,599,077 km²)38.8%
Samoa49,401 mi² (127,950 km²)34.6%
South Korea183,579 mi² (475,469 km²)28.3%
Taiwan32,135 mi² (83,231 km²)26.3%
Argentina447,516 mi² (1,159,063 km²)22.6%
Cook Islands756,770 mi² (1,960,027 km²)29.0%
Phillippines614,203 mi² (1,590,780 km²)16.7%
China338,618 mi² (877,019 km²)11.4%
Madagascar473,075 mi² (1,225,259 km²)5.5%
Bangladesh45,873 mi² (118,813 km²)3.3%
Thailand115,597 mi² (299,397 km²)1.5%

*An exclusive economic zone (EEZ) is the sea zone stretching 200 nautical miles (nmi) from the coast of a state.

Japan and the UK, which have the 5th and 8th largest EEZs respectively, are the clear leaders in mapping their ocean territory.

Piecing Together the Puzzle

Sometimes tragedy can have a silver lining. By the time the search for Malaysia Airlines Flight 370 concluded in 2014, scientists had gained access to more than 100,000 square miles of newly mapped sections of the Indian Ocean.

Of course, it will take a more systematic approach and sustained effort to truly map the world’s ocean floors. Thankfully, a project called Seabed 2030 has the ambitious goal of mapping the entire ocean floor by 2030. The organization is collaborating with existing mapping initiatives in various regions to compile bathymetric information (undersea map data).

It’s been said without hyperbole that we know more about the surface of Mars than we do about our own planet’s seabed, but thanks to the efforts of Seabed 2030 and other initiatives around the world, puzzle pieces are finally falling into place.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Green

Visualizing the Biggest Threats to Earth’s Biodiversity

Earth’s biodiversity has seen a massive decrease over the years. What’s driving this loss, and which regions have been impacted the most?

Published

on

The Biggest Threats to Earth’s Biodiversity

Biodiversity benefits humanity in many ways.

It helps make the global economy more resilient, it functions as an integral part of our culture and identity, and research has shown it’s even linked to our physical health.

However, despite its importance, Earth’s biodiversity has decreased significantly over the last few decades. In fact, between 1970 and 2016, the population of vertebrate species fell by 68% on average worldwide. What’s causing this global decline?

Today’s graphic uses data from WWF’s Living Planet Report 2020 to illustrate the biggest threats to Earth’s biodiversity, and the impact each threat has had globally.

Measuring the Loss of Biodiversity

Before looking at biodiversity’s biggest threats, first thing’s first—how exactly has biodiversity changed over the years?

WWF uses the Living Planet Index (LPI) to measure biodiversity worldwide. Using data from over 4,000 different species, LPI tracks the abundance of mammals, birds, fish, reptiles, and amphibians across the globe.

Here’s a look at each region’s average decline between 1970 and 2016:

RankRegionAverage decline (between 1970 and 2016)
1Latin America & Caribbean94%
2Africa65%
3Asia Pacific45%
4North America33%
5Europe and Central Asia24%

Latin America & Caribbean has seen the biggest drop in biodiversity at 94%. This region’s drastic decline has been mainly driven by declining reptile, amphibian, and fish populations.

Despite varying rates of loss between regions, it’s clear that overall, biodiversity is on the decline. What main factors are driving this loss, and how do these threats differ from region to region?

Biggest Threats to Biodiversity, Overall

While it’s challenging to create an exhaustive list, WWF has identified five major threats and shown each threats proportional impact, averaged across all regions:

ThreatProportion of threat (average across all regions)
Changes in land and sea use50%
Species overexploitation24%
Invasive species and disease13%
Pollution7%
Climate Change6%

Across the board, changes in land and sea use account for the largest portion of loss, making up 50% of recorded threats to biodiversity on average. This makes sense, considering that approximately one acre of the Earth’s rainforests is disappearing every two seconds.

Species overexploitation is the second biggest threat at 24% on average, while invasive species takes the third spot at 13%.

Biggest Threats to Biodiversity, By Region

When looking at the regional breakdown, the order of threats in terms of biodiversity impact is relatively consistent across all regions—however, there are a few discrepancies:

In Latin America and Caribbean, climate change has been a bigger biodiversity threat than in other regions, and this is possibly linked to an increase in natural disasters. Between 2000 and 2013, the region experienced 613 extreme climate and hydro-meteorological events, from typhoons and hurricanes to flash floods and droughts.

Another notable variation from the mean is species over-exploitation in Africa, which makes up 35% of the region’s threats. This is higher than in other regions, which sit around 18-27%.

While the regional breakdowns differ slightly from place to place, one thing remains constant across the board—all species, no matter how small, play an important role in the maintenance of Earth’s ecosystems.

Will we continue to see a steady decline in Earth’s biodiversity, or will things level out in the near future?

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Subscribe

Join the 220,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular