Connect with us

Green

Visualizing the Human Impact on the Ocean Economy

Published

on

Human Impact and the Ocean Economy

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

Visualizing the Human Impact on our Ocean Economy

When you think of economic output, it’s likely the ocean isn’t the first entity that comes to mind. But from facilitating international trade to regulating the climate, the “blue economy” contributes significant value in both tangible and intangible ways.

The sustainable use of the ocean and its resources for economic development and livelihoods have such far-reaching effects, that its protection is a significant goal of the United Nations, as well as for many other countries and organizations throughout the world.

However, these vital ocean assets are in danger of sinking quickly. Ahead of World Oceans Day on June 8, 2020, we look at the total value of assets that come from our ocean, and how various human activities are affecting these resources.

Global Ocean Asset Value

Economic value from all the oceans is measured both by their direct output, as well as any indirect impacts they produce.

According to the World Wildlife Fund, these combined assets are valued at over $24 trillion. Here’s how they break down:

  • Direct Output: Marine fisheries, coral reefs, seagrass, and mangroves
    Total value: $6.9T
    Examples of direct output: Fishing, agriculture
  • Trade and Transport: Shipping lanes
    Total value: $5.2T
  • Adjacent Assets: Productive coastline, carbon absorption
    Total value: $7.8T, and $4.3T respectively
    Examples of services enabled: Tourism, education/conservation (such as jobs created)

In fact, the annual gross marine product of the oceans is comparable to the Gross Domestic Product (GDP) of countries, coming in at $2.5 trillion per year—making it the world’s eighth largest economy in country terms.

Unfortunately, experts warn that various human activities are endangering these ocean assets and their reliant ecosystems.

The Cumulative Human Impact on Oceans

An 11-year long scientific study tracked the global effect of multiple human activities across diverse marine environments. The researchers identified four main categories of stressors between 2003-2013.

  1. Climate change: Sea surface temperature, ocean acidification, and sea level rise
  2. Ocean: Shipping
  3. Land-based: Nutrient pollution, organic chemical pollution, direct human pollution, light pollution
  4. Fishing: Commercial and artisanal fishing, including trawling methods

Across the board, climate stressors were the most dominant drivers of change in a majority of marine environments. Similarly, pollution levels have also increased for many ecosystems.

Plastic pollution is especially damaging, as it continues to grow at unprecedented rates, with a significant amount ending up in the oceans. The World Economic Forum estimates that by 2050, there could be more plastic in the ocean than fish by weight.

Among the various marine environments, coral reefs, seagrasses, and mangroves proved to be most at-risk, experiencing the fastest increase in cumulative human impact. However, these are also the same ecosystems that we rely on for their direct economic output.

Overall, climate-induced declines in ocean health could cost the global economy $428 billion annually by 2050.

The Ocean Economy is in Hot Water

It can be difficult to truly understand the scale at which we rely on the ocean for climate regulation. The ocean is a major “carbon sink”, absorbing nearly 30% of the carbon emitted by human activity. But acidity levels and rising sea surface temperatures are changing its chemistry, and reducing its ability to dissolve CO₂.

According to the UN, ocean acidification has grown by 26% since pre-industrial times. At our current rates, it could rise to 100-150% by the end of the century. Overfishing is another urgent threat that shows no signs of slowing down, with sustainable fish stocks declining from 90% to 66.9% in just over 40 years.

To try and counteract these issues, this year’s virtual World Oceans Day is focused on “Innovation for a Sustainable Oceans” to discuss various solutions, including how the private sector can work with communities to maintain the blue economy. In addition, there’s a petition in place to urge world leaders to help protect 30% of the natural world by 2030.

Will our human activities continue to stress the ocean economy, or will we be able to positively reverse these trends in the years to come?

Click for Comments

Environment

How Carbon Dioxide Removal is Critical to a Net-Zero Future

Here’s how carbon dioxide removal methods could help us meet net-zero targets and and stabilize the climate.

Published

on

Teaser image for a post on the importance of carbon dioxide removal in the push for a net-zero future.

Published

on

The following content is sponsored by Carbon Streaming

How Carbon Dioxide Removal is Critical to a Net-Zero Future

Meeting the Paris Agreement temperature goals and avoiding the worst consequences of a warming world requires first and foremost emission reductions, but also the ongoing direct removal of CO2 from the atmosphere.

We’ve partnered with Carbon Streaming to take a deep look at carbon dioxide removal methods, and the role that they could play in a net-zero future. 

What is Carbon Dioxide Removal?

Carbon Dioxide Removal, or CDR, is the direct removal of CO2 from the atmosphere and its durable storage in geological, terrestrial, or ocean reservoirs, or in products. 

And according to the UN Environment Programme, all least-cost pathways to net zero that are consistent with the Paris Agreement have some role for CDR. In a 1.5°C scenario, in addition to emissions reductions, CDR will need to pull an estimated 3.8 GtCO2e p.a. out of the atmosphere by 2035 and 9.2 GtCO2e p.a. by 2050.

The ‘net’ in net zero is an important quantifier here, because there will be some sectors that can’t decarbonize, especially in the near term. This includes things like shipping and concrete production, where there are limited commercially viable alternatives to fossil fuels.

Not All CDR is Created Equal

There are a whole host of proposed ways for removing CO2 from the atmosphere at scale, which can be divided into land-based and novel methods, and each with their own pros and cons. 

Land-based methods, like afforestation and reforestation and soil carbon sequestration, tend to be the cheapest options, but don’t tend to store the carbon for very long—just decades to centuries. 

In fact, afforestation and reforestation—basically planting lots of trees—is already being done around the world and in 2020, was responsible for removing around 2 GtCO2e. And while it is tempting to think that we can plant our way out of climate change, think that the U.S. would need to plant a forest the size of New Mexico every year to cancel out their emissions.

On the other hand, novel methods like enhanced weathering and direct air carbon capture and storage, because they store carbon in minerals and geological reservoirs, can keep carbon sequestered for tens of thousand years or longer. The trade off is that these methods can be very expensive—between $100-500 and north of $800 per metric ton

CDR Has a Critical Role to Play

In the end, there is no silver bullet, and given that 2023 was the hottest year on record—1.45°C above pre-industrial levels—it’s likely that many different CDR methods will end up playing a part, depending on local circumstances. 

And not just in the drive to net zero, but also in the years after 2050, as we begin to stabilize global average temperatures and gradually return them to pre-industrial norms. 

Carbon Streaming uses carbon credit streams to finance CDR projects, such as reforestation and biochar, to accelerate a net-zero future.

Visual Capitalist Logo

Learn more about Carbon Streaming’s CDR projects.

Click for Comments

You may also like

Subscribe

Continue Reading
Voronoi, the app by Visual Capitalist. Where data tells the story. Download on App Store or Google Play

Subscribe

Popular