Connect with us

Green

Visualizing the Prolific Plastic Problem in Our Oceans

Published

on

In February of 2018, a dead sperm whale washed up on along the picturesque shoreline of Cabo de Palos in Spain.

Officials noted that the whale was unusually thin, and a necropsy confirmed that the whale died from an acute abdominal infection. Put simply, the whale ingested so much plastic debris – 67 lbs worth – that its digestive system ruptured.

The Plastic Problem, Visualized

Today’s infographic comes to us from Custom Made, and it helps put the growing marine debris problem in perspective.

The Pacific's Prolific Plastic Problem

A Spiraling Problem

The equivalent of one garbage truck full of plastic enters the sea every minute and the volume of ocean plastic is expected to triple within a decade.

Every stray bit of trash that enters the ocean, from a frayed fishing net off the coast of the Philippines to a plastic bottle cap from an Oakland storm drain, all end up circulating in rotating ocean currents called gyres.

For this reason, the Pacific Gyre is now better known by another name: The Great Pacific Garbage Patch.

The Sum of Many Plastic Parts

The Great Pacific Garbage Patch is often misrepresented online as a literal raft of floating trash stretching as far as the eye can see. The real situation is less visually dramatic, but it’s what we can’t see – microplastic – that’s the biggest problem. Tiny fragments of plastic pose the biggest risks to humans because it’s easy for them to enter the food chain after being ingested by marine life.

While derelict fishing gear such as nets and floats are a contributor to the problem, land-based activity accounts for the majority of the garbage circulating in the ocean. Most of the world’s countries have ocean coastlines, and with so many jurisdictions and varying degrees of environmental scrutiny, truly curbing the flow of plastic isn’t realistic in the near term.

No Solution on the Horizon

Garbage patches have formed deep in the middle of international waters, so there is no clear cut way to decide who is responsible for cleaning up the mess. Organizations like The Ocean Cleanup are researching ocean gyres and providing better insight into the extent of the plastic problem. The Ocean Cleanup is best positioned to make a real impact, though executing on their vision will require vast resources and substantial funding.

Nobody likes seeing whales wash up on shore, but for now, a fully-scaled solution may still far out on the horizon.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Energy

Mapped: The World’s Nuclear Reactor Landscape

Which countries are turning to nuclear energy, and which are turning away? Mapping and breaking down the world’s nuclear reactor landscape.

Published

on

The World’s Changing Nuclear Reactor Landscape

View a more detailed version of the above map by clicking here

Following the 2011 Fukushima nuclear disaster in Japan, the most severe nuclear accident since Chernobyl, many nations reiterated their intent to wean off the energy source.

However, this sentiment is anything but universal—in many other regions of the world, nuclear power is still ramping up, and it’s expected to be a key energy source for decades to come.

Using data from the Power Reactor Information System, maintained by the International Atomic Energy Agency, the map above gives a comprehensive look at where nuclear reactors are subsiding, and where future capacity will reside.

Increasing Global Nuclear Use

Despite a dip in total capacity and active reactors last year, nuclear power still generated around 10% of the world’s electricity in 2019.

Global Nuclear Reactors and Electrical Capacity

Part of the increased capacity came as Japan restarted some plants and European countries looked to replace aging reactors. But most of the growth is driven by new reactors coming online in Asia and the Middle East.

China is soon to have more than 50 nuclear reactors, while India is set to become a top-ten producer once construction on new reactors is complete.

Asia's Growing Nuclear Footprint

Decreasing Use in Western Europe and North America

The slight downtrend from 450 operating reactors in 2018 to 443 in 2019 was the result of continued shutdowns in Europe and North America. Home to the majority of the world’s reactors, the two continents also have the oldest reactors, with many being retired.

At the same time, European countries are leading the charge in reducing dependency on the energy source. Germany has pledged to close all nuclear plants by 2022, and Italy has already become the first country to completely shut down their plants.

Despite leading in shutdowns, Europe still emerges as the most nuclear-reliant region for a majority of electricity production and consumption.

world-nuclear-landscape-supplemental-3

In addition, some countries are starting to reassess nuclear energy as a means of fighting climate change. Reactors don’t produce greenhouse gases during operation, and are more efficient (and safer) than wind and solar per unit of electricity.

Facing steep emission reduction requirements, a variety of countries are looking to expand nuclear capacity or to begin planning for their first reactors.

A New Generation of Nuclear Reactors?

For those parties interested in the benefits of nuclear power, past accidents have also led towards a push for innovation in the field. That includes studies of miniature nuclear reactors that are easier to manage, as well as full-size reactors with robust redundancy measures that won’t physically melt down.

Additionally, some reactors are being designed with the intention of utilizing accumulated nuclear waste—a byproduct of nuclear energy and weapon production that often had to be stored indefinitely—as a fuel source.

With some regions aiming to reduce reliance on nuclear power, and others starting to embrace it, the landscape is certain to change.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Green

How China’s Plastics Ban Threw Global Recycling into Disarray

For decades, developed countries outsourced their recyclables to China. Now, they’re on their own, and a multi-billion dollar opportunity has emerged.

Published

on

Global Recycling: Reinventing a Broken System

First developed in the 20th century, plastics have become ubiquitous in our daily lives. Found in everything from food packaging to medical devices, this extremely versatile and cost-effective material has undoubtedly made our lives more convenient.

This convenience comes at a cost, however, and experts warn that plastics’ inability to biodegrade is taking a toll on the planet. To make matters worse, recycling infrastructure around the world is severely underdeveloped.

In this infographic from Swissquote, we recount the end of “easy” recycling, and examine the struggles that many countries are facing as they scale up their domestic capabilities.

The Single-Supplier Global Recycling Model

Since the early 1990s, developed countries have avoided the environmental costs of plastic by outsourcing their recycling to the developing world—more specifically, China.

At the time, this arrangement benefited both parties. On one hand, it was cheaper for developed countries to export their plastic waste rather than process it domestically. China, on the other hand, needed vast amounts of raw materials to fuel its burgeoning manufacturing industries. It also meant that Chinese container ships, which regularly delivered goods to countries like the U.S., would no longer return home empty-handed.

A system that relies heavily on one country can only handle so much, however, and by 2016 China was importing 7 million tonnes of recyclables and waste per year. To make matters worse, plastics production kept growing at a faster rate than the global population:

YearGrowth in Global Plastics Production (%)Growth in World Population (%)
20133.821.19
20144.011.17
20153.541.16
20164.041.14
20173.881.12
20183.161.1

Source: PlasticsEurope, Worldometer

It was clear that this system would soon reach its tipping point, especially with the Chinese government largely committed to going green.

National Sword Policy

China’s solution to cutting down plastic imports was the National Sword policy, which at the start of 2018, implemented an import ban on 24 types of recyclables. The ban was extremely effective—plastic exports to China fell from 581,000 tonnes in February of 2017 to just 23,900 tonnes a year later.

All of this plastic did not simply disappear, though. Plastic-exporting countries scrambled for alternatives, and in some cases, diverted their shipments to nearby countries in Southeast Asia. Governments in the region were quick to respond, either refusing shipments or implementing bans of their own.

Richer countries are taking advantage of the looser regulations in poorer countries. They export the trash here because it’s more expensive for them to process [it] themselves back home due to the tighter laws.

—Lea Guerrero, Greenpeace Philippines

In one noteworthy case, Rodrigo Duterte, President of the Philippines, threatened to wage war on Canada if it did not take back its shipments of waste. An official later clarified this threat was not to be taken literally.

The End of “Easy” Recycling

Western countries tend to produce more plastics per capita than other countries, but are ill-prepared to begin processing their own plastic waste in a sustainable manner. One critical issue arises from their predominant method of recycling known as single-stream recycling.

Under this method, consumers place all of their recyclables into a single bin. This mixture of cardboard, plastics, and glass is then brought to a material recovery facility (MRF) to be sorted and processed. While this method makes it easier for consumers to recycle, it suffers from two weaknesses:

  1. Contamination: Mixing plastics, chemicals, and food waste adds extra costs to the recycling process. On average, one in four items that arrive at an MRF are too contaminated to be recycled.
  2. Sorting inefficiency: MRFs have a difficult time sorting through the wide variety of materials being placed into bins. Approximately one in six bottles and one in three cans are sorted incorrectly.

With outsourcing no longer an option, MRFs across the U.S. are now dealing with significantly larger volumes. To boost their capacity, some facilities have implemented artificial intelligence (AI) empowered robots that can sort items significantly faster than humans. An added bonus to reducing the human workforce is safety⁠—MRFs frequently have some of the industry’s highest injury and illness incidence rates.

Investing in Domestic Solutions

China’s ban on foreign plastics has exposed the frailty of a single-supplier global recycling model, and is forcing many countries to begin developing their domestic infrastructure.

One emerging leader in this space is the EU, which has passed ambitious legislation to promote recycling industry investment. Recognizing the unsustainability of single-use plastics, the EU has mandated its member states to achieve a 90% collection rate for plastic bottles by 2029. It’s also set a target for all plastic packaging to be recyclable or reusable by 2030, an initiative that could create up to 200,000 new jobs.

Aside from the environmental benefits, the global recycling industry could also be a source of economic growth. It’s estimated that between 2018 and 2024 that it will grow at a CAGR of 8.6% to reach $63 billion.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Subscribe

Join the 200,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular