The Battery Series: The Future of Battery Technology
Connect with us

Energy

The Future of Battery Technology

Published

on

The Battery Series
Part 5: The Future of Battery Technology

The Battery Series is a five-part infographic series that explores what investors need to know about modern battery technology, including raw material supply, demand, and future applications.

Presented by: Nevada Energy Metals, eCobalt Solutions Inc., and Great Lakes Graphite

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

The Battery Series: The Future of Battery Technology

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

The Future of Battery Technology

This is the last installment of the Battery Series. For a recap of what has been covered so far, see the evolution of battery technology, the energy problem in context, the reasons behind the surge in lithium-ion demand, and the critical materials needed to make lithium-ion batteries.

There’s no doubt that the lithium-ion battery has been an important catalyst for the green revolution, but there is still much work to be done for a full switch to renewable energy.

Sponsors
Nevada Energy Metals
eCobalt Solutions Inc.
Great Lakes Graphite

The battery technology of the future could:

  • Make electric cars a no-brainer choice for any driver.
  • Make grid-scale energy storage solutions cheap and efficient.
  • Make a full switch to renewable energy more feasible.

Right now, scientists see many upcoming battery innovations that have the promise to do this. However, the road to commercialization is long, arduous, and filled with many unexpected obstacles.

The Near-Term: Improving the Li-Ion

For the foreseeable future, the improvement of battery technology relies on modifications being made to already-existing lithium-ion technology. In fact, experts estimate that lithium-ions will continue to increase capacity by 6-7% annually for a number of years.

Here’s what’s driving those advances:

Efficient Manufacturing

Tesla has already made significant advances in battery design and production through its Gigafactory:

  • Better engineering and manufacturing processes.
  • Wider and longer cell design allows more materials packaged into each cell.
  • New battery cooling system allows to fit more cells into battery pack.

Better Cathodes

Most of the recent advances in lithium-ion energy density have come from manipulating the relative quantities of cobalt, aluminum, manganese, and nickel in the cathodes. By 2020, 75% of batteries are expected to contain cobalt in some capacity.

For scientists, its about finding the materials and crystal structures that can store the maximum amount of ions. The next generation of cathodes may be born from lithium-rich layered oxide materials (LLOs) or similar approaches, such as the nickel-rich variety.

Better Anodes

While most lithium-ion progress to date has come from cathode tinkering, the biggest advances might happen in the anode.

Current graphite anodes can only store one lithium atom for every six carbon atoms – but silicon anodes could store 4.4 lithium atoms for every one silicon atom. That’s a theoretical 10x increase in capacity!

However, the problem with this is well-documented. When silicon houses these lithium ions, it ends up bloating in size up to 400%. This volume change can cause irreversible damage to the anode, making the battery unusable.

To get around this, scientists are looking at a few different solutions.

1. Encasing silicon in a graphene “cage” to prevent cracking after expansion.
2. Using silicon nanowires, which can better handle the volume change.
3. Adding silicon in tiny amounts using existing manufacturing processes – Tesla is rumored to already be doing this.

Solid-State Lithium-Ion

Lastly, a final improvement that is being worked on for the lithium-ion battery is to use a solid-state setup, rather than having liquid electrolytes enabling the ion transfer. This design could increase energy density in the future, but it still has some problems to resolve first, such as ions moving too slowing through the solid electrolyte.

The Long-Term: Beyond the Lithium-ion

Here are some new innovations in the pipeline that could help enable the future of battery technology:

Lithium-Air

Anode: Lithium
Cathode: Porous carbon (Oxygen)
Promise: 10x greater energy density than Li-ion
Problems: Air is not pure enough and would need to be filtered. Lithium and oxygen form peroxide films that produce a barrier, ultimately killing storage capacity. Cycle life is only 50 cycles in lab tests.
Variations: Scientists also trying aluminum-air and sodium-air batteries as well.

Lithium-Sulphur

Anode: Lithium
Cathode: Sulphur, Carbon
Promise: Lighter, cheaper, and more powerful than li-ion
Problems: Volume expansion of up to 80%, causing mechanical stress. Unwanted reactions with electrolytes. Poor conductivity and poor stability at higher temperatures.
Variations: Many different variations exist, including using graphite/graphene, and silicon in the chemistry.

Vanadium Flow Batteries

Catholyte: Vanadium
Anolyte: Vanadium
Promise: Using vanadium ions in different oxidation states to store chemical potential energy at scale. Can be expanded simply by using larger electrolyte tanks.
Problems: Poor energy-to-volume ratio. Very heavy; must be used in stationary applications.
Variations: Scientists are experimenting with other flow battery chemistries as well, such as zinc-bromine.

Battery Series: Conclusion

While the future of battery technology is very exciting, for the near and medium terms, scientists are mainly focused on improving the already-commercialized lithium-ion.

What does the battery market look like 15 to 20 years from now? It’s ultimately hard to say. However, it’s likely that some of these new technologies above will help in leading the charge to a 100% renewable future.

Thanks for taking a look at The Battery Series.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the Range of Electric Cars vs. Gas-Powered Cars

With range anxiety being a barrier to EV adoption, how far can an electric car go on one charge, and how do EV ranges compare with gas cars?

Published

on

The Range of Electric Cars vs. Gas-Powered Cars

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

EV adoption has grown rapidly in recent years, but many prospective buyers still have doubts about electric car ranges.

In fact, 33% of new car buyers chose range anxiety—the concern about how far an EV can drive on a full charge—as their top inhibitor to purchasing electric cars in a survey conducted by EY.

So, how far can the average electric car go on one charge, and how does that compare with the typical range of gas-powered cars?

The Rise in EV Ranges

Thanks to improvements in battery technology, the average range of electric cars has more than doubled over the last decade, according to data from the International Energy Agency (IEA).

YearAvg. EV RangeMaximum EV Range
201079 miles (127 km)N/A
201186 miles (138 km)94 miles (151 km)
201299 miles (159 km)265 miles (426 km)
2013117 miles (188 km)265 miles (426 km)
2014130 miles (209 km)265 miles (426 km)
2015131 miles (211 km)270 miles (435 km)
2016145 miles (233 km)315 miles (507 km)
2017151 miles (243 km)335 miles (539 km)
2018189 miles (304 km)335 miles (539 km)
2019209 miles (336 km)370 miles (595 km)
2020210 miles (338 km)402 miles (647 km)
2021217 miles (349 km)520 miles* (837 km)

*Max range for EVs offered in the United States.
Source: IEA, U.S. DOE

As of 2021, the average battery-powered EV could travel 217 miles (349 km) on a single charge. It represents a 44% increase from 151 miles (243 km) in 2017 and a 152% increase relative to a decade ago.

Despite the steady growth, EVs still fall short when compared to gas-powered cars. For example, in 2021, the median gas car range (on one full tank) in the U.S. was around 413 miles (664 km)—nearly double what the average EV would cover.

As automakers roll out new models, electric car ranges are likely to continue increasing and could soon match those of their gas-powered counterparts. It’s important to note that EV ranges can change depending on external conditions.

What Affects EV Ranges?

In theory, EV ranges depend on battery capacity and motor efficiency, but real-world results can vary based on several factors:

  • Weather: At temperatures below 20℉ (-6.7℃), EVs can lose around 12% of their range, rising to 41% if heating is turned on inside the vehicle.
  • Operating Conditions: Thanks to regenerative braking, EVs may extend their maximum range during city driving.
  • Speed: When driving at high speeds, EV motors spin faster at a less efficient rate. This may result in range loss.

On the contrary, when driven at optimal temperatures of about 70℉ (21.5℃), EVs can exceed their rated range, according to an analysis by Geotab.

The 10 Longest-Range Electric Cars in America

Here are the 10 longest-range electric cars available in the U.S. as of 2022, based on Environmental Protection Agency (EPA) range estimates:

CarRange On One Full ChargeEstimated Base Price
Lucid Air520 miles (837 km)$170,500
Tesla Model S405 miles (652 km)$106,190
Tesla Model 3358 miles (576 km)$59,440
Mercedes EQS350 miles (563 km)$103,360
Tesla Model X348 miles (560 km)$122,440
Tesla Model Y330 miles (531 km)$67,440
Hummer EV329 miles (529 km)$110,295
BMW iX324 miles (521 km)$84,195
Ford F-150 Lightning320 miles (515 km)$74,169
Rivian R1S316 miles (509 km)$70,000

Source: Car and Driver

The top-spec Lucid Air offers the highest range of any EV with a price tag of $170,500, followed by the Tesla Model S. But the Tesla Model 3 offers the most bang for your buck if range and price are the only two factors in consideration.

Continue Reading

Energy

Green Steel: Decarbonising with Hydrogen-Fueled Production

How will high emission industries respond to climate change? We highlight industrial emissions and hydrogen’s role in green steel production.

Published

on

This infographic highlights industrial emissions and hydrogen's role in green steel production.
The following content is sponsored by AFRY
This infographic highlights industrial emissions and hydrogen's role in green steel production.

Green Steel: Decarbonising with Hydrogen-Fueled Production

As the fight against climate change ramps up worldwide, the need for industries and economies to respond is immediate.

Of course, different sectors contribute different amounts of greenhouse gas (GHG) emissions, and face different paths to decarbonisation as a result. One massive player? Steel and iron manufacturing, where energy-related emissions account for roughly 6.1% of global emissions.

The following infographic by AFRY highlights the need for steel manufacturing to evolve and decarbonise, and how hydrogen can play a vital role in the “green” steel revolution.

The Modern Steel Production Landscape

Globally, crude steel production totalled 1,951 million tonnes (Mt) in 2021.

This production is spread all over the world, including India, Japan, and the U.S., with the vast majority (1,033 million tonnes) concentrated in China.

But despite being produced in many different places globally, only two main methods of steel production have been honed and utilised over time—electric arc furnace (EAF) and blast furnace basic oxygen furnace (BF-BOF) production.

Both methods traditionally use fossil fuels, and in 2019 contributed 3.6 Gt of carbon dioxide (CO2) emissions:

Steel Production MethodMaterials UtilisedCO2 Emissions (2019)
EAFScrap0.5 Gt
BF-BOFScrap, iron ore, coke3.1 Gt

That’s why one of the main ways the steel industry can decarbonise is through the replacement of fossil fuels.

Hydrogen’s Role in Green Steel Production

Of course, one of the biggest challenges facing the industry is how to decarbonise and produce “green” steel in an extremely competitive market.

As a globally-traded good with fine cost margins, steel production has been associated with major geopolitical issues, including trade disputes and tariffs. But because of climate change, there is also a sudden and massive demand for carbon-friendly production.

And that’s where hydrogen plays a key role. Steel traditionally made in a blast furnace uses coke—a high-carbon fuel made by heating coal without air—as a fuel source to heat iron ore pellets and liquify the pure iron component. This expels a lot of emissions in order to get the iron hot enough to melt (1,200 °C) and be mixed with scrap and made into steel.

The green steel method instead uses hydrogen to reduce the iron pellets into sponge iron, metallic iron that can then be processed to form steel. This process is also done at high temperature but below the melting point of iron (800 – 1,200 °C), saving energy costs.

And by introducing non-fossil fuels to create iron pellets and renewable electricity to turn the sponge iron and scrap into steel, fossil fuels can be removed from the process, significantly reducing emissions as a result.

The Future of Green Steel Production

Given the massive global demand for steel, the need for hydrogen and renewable energy required for green steel production is just as significant.

According to AFRY and the International Renewable Energy Agency, meeting global steel production in 2021 using the green steel method would require 97.6 million tonnes of hydrogen.

And for a truly carbon-free transition to green steel, the energy industry will also need to focus on green hydrogen production using electrolysis. Unlike methods which burn natural gas to release hydrogen, electrolysis entails the splitting of water (H2O) into oxygen and hydrogen using renewable energy sources.

Full green steel production would therefore use green hydrogen, electrolysers running on renewables, and additional renewables for all parts of the supply chain:

Steel Production SourceAnnual Steel ProductionGreen Hydrogen RequiredElectrolyser Capacity RequiredTotal Renewables Capacity Required
Base Reference1 Mt50 kT0.56 GW0.7 GW
U.S.85.8 Mt4.3 Mt48 GW60 GW
Europe103 Mt5.2 Mt58 GW72 GW
China1032.8 Mt51.6 Mt581 GW726 GW
Global1951 Mt97.6 Mt1,097 GW1,371 GW

Currently, green hydrogen production costs are higher than traditional fossil fuel methods, and are dependent on the levelised costs of renewable energy sources. This means they vary by region, but also that they will reduce as production capacity and subsidies for renewables and green hydrogen increase.

And many major European steel manufacturers are already leading the way with pilot and large scale facilities for green steel production. Germany alone has at least seven projects in the works, including by ArcelorMittal and ThyssenKrupp, two of the world’s 10 largest steelmakers by revenue.

AFRY is a thought leadership firm that provides companies with advisory services and sustainable solutions, in their efforts to fight climate change and lead them towards a greater future.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular