Connect with us

Energy

The Future of Battery Technology

Published

on

The Battery Series
Part 5: The Future of Battery Technology

The Battery Series is a five-part infographic series that explores what investors need to know about modern battery technology, including raw material supply, demand, and future applications.

Presented by: Nevada Energy Metals, eCobalt Solutions Inc., and Great Lakes Graphite

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

The Battery Series: The Future of Battery Technology

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

The Future of Battery Technology

This is the last installment of the Battery Series. For a recap of what has been covered so far, see the evolution of battery technology, the energy problem in context, the reasons behind the surge in lithium-ion demand, and the critical materials needed to make lithium-ion batteries.

There’s no doubt that the lithium-ion battery has been an important catalyst for the green revolution, but there is still much work to be done for a full switch to renewable energy.

Sponsors
Nevada Energy Metals
eCobalt Solutions Inc.
Great Lakes Graphite

The battery technology of the future could:

  • Make electric cars a no-brainer choice for any driver.
  • Make grid-scale energy storage solutions cheap and efficient.
  • Make a full switch to renewable energy more feasible.

Right now, scientists see many upcoming battery innovations that have the promise to do this. However, the road to commercialization is long, arduous, and filled with many unexpected obstacles.

The Near-Term: Improving the Li-Ion

For the foreseeable future, the improvement of battery technology relies on modifications being made to already-existing lithium-ion technology. In fact, experts estimate that lithium-ions will continue to increase capacity by 6-7% annually for a number of years.

Here’s what’s driving those advances:

Efficient Manufacturing

Tesla has already made significant advances in battery design and production through its Gigafactory:

  • Better engineering and manufacturing processes.
  • Wider and longer cell design allows more materials packaged into each cell.
  • New battery cooling system allows to fit more cells into battery pack.

Better Cathodes

Most of the recent advances in lithium-ion energy density have come from manipulating the relative quantities of cobalt, aluminum, manganese, and nickel in the cathodes. By 2020, 75% of batteries are expected to contain cobalt in some capacity.

For scientists, its about finding the materials and crystal structures that can store the maximum amount of ions. The next generation of cathodes may be born from lithium-rich layered oxide materials (LLOs) or similar approaches, such as the nickel-rich variety.

Better Anodes

While most lithium-ion progress to date has come from cathode tinkering, the biggest advances might happen in the anode.

Current graphite anodes can only store one lithium atom for every six carbon atoms – but silicon anodes could store 4.4 lithium atoms for every one silicon atom. That’s a theoretical 10x increase in capacity!

However, the problem with this is well-documented. When silicon houses these lithium ions, it ends up bloating in size up to 400%. This volume change can cause irreversible damage to the anode, making the battery unusable.

To get around this, scientists are looking at a few different solutions.

1. Encasing silicon in a graphene “cage” to prevent cracking after expansion.
2. Using silicon nanowires, which can better handle the volume change.
3. Adding silicon in tiny amounts using existing manufacturing processes – Tesla is rumored to already be doing this.

Solid-State Lithium-Ion

Lastly, a final improvement that is being worked on for the lithium-ion battery is to use a solid-state setup, rather than having liquid electrolytes enabling the ion transfer. This design could increase energy density in the future, but it still has some problems to resolve first, such as ions moving too slowing through the solid electrolyte.

The Long-Term: Beyond the Lithium-ion

Here are some new innovations in the pipeline that could help enable the future of battery technology:

Lithium-Air

Anode: Lithium
Cathode: Porous carbon (Oxygen)
Promise: 10x greater energy density than Li-ion
Problems: Air is not pure enough and would need to be filtered. Lithium and oxygen form peroxide films that produce a barrier, ultimately killing storage capacity. Cycle life is only 50 cycles in lab tests.
Variations: Scientists also trying aluminum-air and sodium-air batteries as well.

Lithium-Sulphur

Anode: Lithium
Cathode: Sulphur, Carbon
Promise: Lighter, cheaper, and more powerful than li-ion
Problems: Volume expansion of up to 80%, causing mechanical stress. Unwanted reactions with electrolytes. Poor conductivity and poor stability at higher temperatures.
Variations: Many different variations exist, including using graphite/graphene, and silicon in the chemistry.

Vanadium Flow Batteries

Catholyte: Vanadium
Anolyte: Vanadium
Promise: Using vanadium ions in different oxidation states to store chemical potential energy at scale. Can be expanded simply by using larger electrolyte tanks.
Problems: Poor energy-to-volume ratio. Very heavy; must be used in stationary applications.
Variations: Scientists are experimenting with other flow battery chemistries as well, such as zinc-bromine.

Battery Series: Conclusion

While the future of battery technology is very exciting, for the near and medium terms, scientists are mainly focused on improving the already-commercialized lithium-ion.

What does the battery market look like 15 to 20 years from now? It’s ultimately hard to say. However, it’s likely that some of these new technologies above will help in leading the charge to a 100% renewable future.

Thanks for taking a look at The Battery Series.

Click for Comments

Energy

Charted: Global Uranium Reserves, by Country

We visualize the distribution of the world’s uranium reserves by country, with 3 countries accounting for more than half of total reserves.

Published

on

A cropped chart visualizing the distribution of the global uranium reserves, by country.

Charted: Global Uranium Reserves, by Country

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

There can be a tendency to believe that uranium deposits are scarce from the critical role it plays in generating nuclear energy, along with all the costs and consequences related to the field.

But uranium is actually fairly plentiful: it’s more abundant than gold and silver, for example, and about as present as tin in the Earth’s crust.

We visualize the distribution of the world’s uranium resources by country, as of 2021. Figures come from the World Nuclear Association, last updated on August 2023.

Ranked: Uranium Reserves By Country (2021)

Australia, Kazakhstan, and Canada have the largest shares of available uranium resources—accounting for more than 50% of total global reserves.

But within these three, Australia is the clear standout, with more than 1.7 million tonnes of uranium discovered (28% of the world’s reserves) currently. Its Olympic Dam mine, located about 600 kilometers north of Adelaide, is the the largest single deposit of uranium in the world—and also, interestingly, the fourth largest copper deposit.

Despite this, Australia is only the fourth biggest uranium producer currently, and ranks fifth for all-time uranium production.

CountryShare of Global
Reserves
Uranium Reserves (Tonnes)
🇦🇺 Australia28%1.7M
🇰🇿 Kazakhstan13%815K
🇨🇦 Canada10%589K
🇷🇺 Russia8%481K
🇳🇦 Namibia8%470K
🇿🇦 South Africa5%321K
🇧🇷 Brazil5%311K
🇳🇪 Niger5%277K
🇨🇳 China4%224K
🇲🇳 Mongolia2%145K
🇺🇿 Uzbekistan2%131K
🇺🇦 Ukraine2%107K
🌍 Rest of World9%524K
Total100%6M

Figures are rounded.

Outside the top three, Russia and Namibia both have roughly the same amount of uranium reserves: about 8% each, which works out to roughly 470,000 tonnes.

South Africa, Brazil, and Niger all have 5% each of the world’s total deposits as well.

China completes the top 10, with a 3% share of uranium reserves, or about 224,000 tonnes.

A caveat to this is that current data is based on known uranium reserves that are capable of being mined economically. The total amount of the world’s uranium is not known exactly—and new deposits can be found all the time. In fact the world’s known uranium reserves increased by about 25% in the last decade alone, thanks to better technology that improves exploration efforts.

Meanwhile, not all uranium deposits are equal. For example, in the aforementioned Olympic Dam, uranium is recovered as a byproduct of copper mining occurring at the same site. In South Africa, it emerges as a byproduct during treatment of ores in the gold mining process. Orebodies with high concentrations of two substances can increase margins, as costs can be shared for two different products.

Continue Reading

Subscribe

Popular