Connect with us

Automotive

Explaining the Surging Demand for Lithium-Ion Batteries

Published

on

The Battery Series
Part 3: Explaining the Surging Demand for Lithium-Ion Batteries

The Battery Series is a five-part infographic series that explores what investors need to know about modern battery technology, including raw material supply, demand, and future applications.

Presented by: Nevada Energy Metals, eCobalt Solutions Inc., and Great Lakes Graphite

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

The Battery Series: Explaining the Surging Demand for Lithium-Ion Batteries

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

Explaining the Surging Demand for Lithium-Ion Batteries

In Parts 1 and 2, we examined the evolution of battery technology as well as what batteries can and cannot do. In this part, we will tackle demand in the rechargeable battery market, with a major focus on the rapidly growing lithium-ion segment.

For many decades, lead-acid batteries have been the most important rechargeable batteries in our lives.

Even in 2014, about 64.5% of all revenues in the rechargeable battery market were from lead-acid sales, mainly to be used for automotive starters.

Sponsors
Nevada Energy Metals
eCobalt Solutions Inc.
Great Lakes Graphite

Why?

Despite not being the most energy dense batteries, lead-acids are proven and can supply high surge currents. They are also extremely cheap to manufacture, costing around $150 per kWh of energy capacity.

Enter Lithium-Ion

The first lithium-ions were not cheap. In fact, early batteries produced commercially in the mid-90s typically costed upwards of $3,000 per kWh of energy.

Luckily, the cost of lithium-ion batteries has come down dramatically, making it the battery of choice for consumer electronics throughout the 2000s. And recently, scientists have made even more progress, opening the lithium-ion to many more applications, namely in electric vehicles.

In 2008, analysts estimated that lithium-ion battery packs costed $600-$1,200 per kWh, but this range would drop to $500-800 per kWh over the following four years. Tesla now claims that a Tesla Model S battery cost is $240 per kWh and that the expected cost for a Model 3 is $190 per kWh.

At $240 kWh, lithium-ions become competitive with $3/gallon gas. At $150, they are even competitive with $2 gas.

Giant megafactories such as Tesla’s Gigafactory 1 will also help bring economies of scale to lithium-ion production, making them even less cost-prohibitive. Soon battery packs will cost closer to $100 per kWh, which will make them essentially cheaper than all gas-powered vehicles.

Demand for Lithium-Ion Batteries

Major advancements in lithium-ion battery technology have been a game-changer. Cheaper, more-effective lithium-ions are now taking over the battery market.

In 2014, lithium-ions made up 33.4% of the rechargeable battery market worldwide, worth $49 billion. By 2025, it is estimated by Bernstein that the rechargeable battery market will more than double in size to $112 billion, while lithium-ion’s market share will more than double to 70.0%.

The key driver? The automotive segment.

In 2010, the automotive sector was a drop in the bucket for lithium-ion battery sales. Five years later, automotive made up more than $5 billion of sales in a sector worth nearly $16 billion.

The EV Goes Mainstream

In 2015, almost half a million cars were sold in the US with an electric drive component.

14% of these sales were battery electric vehicles (BEVs):

  • 71,000 Battery EVs (14%)
  • 43,000 plug-in hybrids (9%)
  • 384,000 hybrids (77%)

= 498,000 electric drive vehicles

But as a part of total US auto sales, BEVs still made up less than 1% of sales:

  • 71,000 battery EVs (0.4%)
  • 43,000 plug-in hybrids (0.3%)
  • 384,000 hybrids (2.3%)
  • 16,900,000 gas/diesel sales (97%)

However, in the near future, this is expected to change fast. By 2040, approximately 35% of all global sales will be BEVs.

This will put electric vehicle sales at close to 40 million per year globally, meaning a lot of energy will need to be stored by batteries. Bloomberg New Energy Finance expects that at this point, that electric vehicles will be pulling more than 1,900 TWh from the grid each year.

How much is 1,900 TWh? It’s enough to power the entire United States for 160 days.

And to meet this demand for lithium-ion powered vehicles, a massive amount of battery packs will need to be manufactured.

Part 4 of The Battery Series looks at which materials will be needed to make this possible.

Continue Reading
Comments

Automotive

Visualizing EV Sales Around the World

With global sales hitting new milestones and adoption rates rising, are electric vehicles now becoming a mainstream option for drivers around the world?

Published

on

electric vehicle sales

It took five years to sell the first million electric cars. In 2018, it took only six months.

The Tesla Model 3 also passed a significant milestone in 2018, becoming the first electric vehicle (EV) to crack the 100,000 sales mark in a single year. The Nissan LEAF and BAIC EC-Series are both likely to surpass the 100,000 this year as well.

Although the electric vehicle market didn’t grow as fast as some experts initially projected, it appears that EV sales are finally hitting their stride around the world. Below are the countries where electric vehicles are a biggest part of the sales mix.

Electric vehicle sales

The EV Capital of the World

Norway, after amassing a fortune through oil and gas extraction, made the conscious decision to create incentives for its citizens to purchase electric vehicles. As a result, the country is the undisputed leader in EV adoption.

In 2018, a one-third of all passenger vehicles were fully electric, and that percentage is only expected to increase in the near future. The Norwegian government has even set the ambitious target of requiring all new cars to be zero-emission by 2025.

That enthusiasm for EVs is spilling over to other countries in the region, which are also seeing a high percentage of EV sales. However, the five countries in which EVs are the most popular – Norway, Iceland, Sweden, Netherlands, and Finland – only account for 0.5% of the world’s population. For EV adoption to make any real impact on global emissions, drivers in high-growth/high–population countries will need to opt for electric powered vehicles. (Of course power grids will need to get greener as well, but that’s another topic.)

China’s Supercharged Impact

One large economy that is embracing plug-in vehicles is China.

The country leads the world in electric vehicle sales, with over a million new vehicles hitting the roads in 2018. Last year, more EVs were sold in Shenzhen and Shanghai than any country in the world, with the exception of the United States.

China also leads the world in another important metric – charging stations. Not only does China have the highest volume of chargers, many of them allow drivers to charge up faster.

Electric vehicle charging stations

Accelerating from the Slow Lane

In the United States, electric vehicle sales are rising, but they still tend to be highly concentrated in specific areas. In around half of states, EVs account for fewer than 1% of vehicle sales. On the other hand, California is approaching the 10% mark, a significant milestone for the most populous state.

Nationally, EV sales increased throughout 2018, with December registering nearly double the sales volume of the same month in 2017. Part of this surge in sales is driven by the Tesla’s Model 3, which led the market in the last quarter of 2018.

U.S. Electric vehicle sales

North of the border, in Canada, the situation is similar. EV sales are increasing, but not fast enough to meet targets set by the government. Canada aimed to have half a million EVs on the road by 2018, but missed that target by around 400,000 vehicles.

The big question now is whether the recent surge in sales is a temporary trend driven by government subsidies and showmanship of Elon Musk, or whether EVs are now becoming a mainstream option for drivers around the world.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Automotive

How Much Copper is in an Electric Vehicle?

Have you ever wondered how much copper is in an electric vehicle? This infographic shows the metal’s properties as well as the quantity of copper used.

Published

on

How Much Copper is in an Electric Vehicle?

Copper’s special relationship with electricity has been apparent since ship designers first regularly began installing copper to protect the masts of wooden ships from lightning in the early 19th century.

Today, of course, you might be more used to seeing copper’s electrical applications through the use of power lines, telephone wires, and wiring in practically every major home appliance you own.

Millions of tons get used for these applications every year, but it is still early days for copper’s use in electrification. That’s because copper will continue to be a critical component of the green energy revolution, thanks to the rising adoption of battery-powered vehicles.

Why Copper?

Today’s visualization comes to us from Canadian Platinum Corp., and it focuses on showing how much copper is in an electric vehicle, along with the properties that make it the ideal choice for an EV-powered future.

Here is why copper is a crucial component to vehicle manufacturers:

Cost
Copper costs roughly $0.20 per ounce, compared to silver ($15/oz) and gold ($1200/oz), making it by far the cheapest option for electrical wire.

Conductivity:
Copper is nearly as conductive as silver – the most conductive metal – but comes at a fraction of the cost.

Ductility:
Copper can easily be shaped into wire, which is important for most electrical applications.

It’s also important to note that temperature does not affect copper’s conductivity, which makes the metal ideal for automobiles in all climates.

Copper in Gas vs. Electric Vehicles

The UBS Evidence Lab tore apart a traditional gas-powered vehicle as well as an EV to compare the different quantities of raw materials used.

What they found was crucial: there is 80% more copper in a Chevrolet Bolt, in comparison to a similar-sized Volkswagen Golf.

The major reason for this is that at the heart of every EV is an electric motor, which is built with copper, steel, and permanent magnets (rare earths). Electric motors tend to be much simpler than gas-powered engines, which have hundreds of moving parts.

Incredibly, in an electric motor, there can be more than a mile of copper wiring inside the stator.

The More Electric, the More Copper

According to Copper.org, along the scale from gas-powered cars to fully electrical vehicles, copper use increases dramatically.

Conventional gas-powered cars contain 18 to 49 lbs. of copper while a battery-powered EV contains 183 lbs. Meanwhile, for a fully electrical bus, a whopping 814 lbs. of copper is needed.

With the rapidly increasing adoption of electric vehicles, copper will be an essential material for the coming electrification of all forms of ground transport.

Copper is at the heart of the electric vehicle and the world will need more. By 2027, copper demand stemming from EVs is expected to increase by 1.7 million tonnes, which is a number just shy of China’s entire copper production in 2017.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Agrios Global Company Spotlight

Subscribe

Join the 100,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular