Connect with us

Batteries

Our Energy Problem: Putting the Battery in Context

Published

on

The Battery Series
Part 2: Our Energy Problem: Putting the Battery in Context

The Battery Series is a five-part infographic series that explores what investors need to know about modern battery technology, including raw material supply, demand, and future applications.

Presented by: Nevada Energy Metals, eCobalt Solutions Inc., and Great Lakes Graphite

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

The Battery Series: Our Energy Problem: Putting the Battery in Context

The Battery Series - Part 1The Battery Series - Part 2The Battery Series - Part 3The Battery Series - Part 4The Battery Series - Part 5

Our Energy Problem: Putting the Battery in Context

In Part 1, we examined the evolution of battery technology. In this part, we examine what batteries can and cannot do, and the energy problem that humans hope that batteries can help solve.

Batteries enable many important aspects of modern life.

They are portable, quiet, compact, and can start-up with the flick of a switch. Importantly, batteries can also store energy from the sun and wind for future use.

Sponsors
Nevada Energy Metals
eCobalt Solutions Inc.
Great Lakes Graphite

However, batteries also have many limitations that prevent them from taking on an even bigger role in society. They must be recharged, and they hold a limited amount of energy. A single battery cycle is only so long, and after many of them they begin to lose potency.

Therefore, to understand the market for batteries and how it may look in the future, it is essential to understand what a battery can and cannot do.

Energy Density

The biggest difference between batteries and other fuel types is in energy density.

Even the best lithium-ion batteries have a specific energy of about 250 Wh/kg. That is just 2% of the energy density of gasoline, and less than 1% of hydrogen.

While it may be enough to power a car, it’s also magnificent engineering that helps makes this possible. Airplanes, ships, trains, and other large power drains will not be using batteries in powertrains anytime soon.

A Renewable Future?

Renewable energy sources like solar and wind face a similar problem – today’s battery technology cannot store big enough payloads of energy. To balance the load, excess energy must be stored somehow to be used when the sun isn’t shining and the wind isn’t blowing.

Currently, industrial-strength battery systems are not yet fully developed to handle this storage problem on a widespread commercial basis, though progress is being made in many areas. New technologies such as vanadium flow batteries could play an important role in energy storage in the future. But for now, large-scale energy storage batteries are experimental.

Other energy storage technologies may also solve this problem:

  • Chemical storage: Using excess electricity to create hydrogen fuel, which can be stored.
  • Pumped hydro: Using electricity to pump water up to a reservoir, which can be later used to generate hydroelectric power.
  • Compressed air: Using electricity to compress air in deep caverns, which can be released to generate power.

Solving this energy storage problem will pave the way for more use of renewables in the future on a grander scale.

The Sweet Spot

Therefore, the sweet spot for battery use today comes when batteries can take advantage of their best properties. Batteries can be small, portable, charged on the go, and provide energy at the flick of a switch.

It’s why so many rechargeable batteries are used in: electronics, laptops, smartphones, electric cars, power tools, startup motors, and other portable items that can benefit from these traits.

To assess the suitability of a particular type for any specific use, there are 10 major properties worth looking at:

  • High Specific Energy: Specific energy is the total amount of energy stored by a battery. The more energy a battery can store, the longer it can run.
  • High Specific Power: Specific power is the amount of load current drawn from the battery. Without high specific power, a battery cannot be used for the high-drain activities we need
  • Affordable Cost: If the price isn’t right for a particular battery type, it may be worth using an alternative fuel source or battery configuration for economic reasons
  • Long Life: The chemical makeup of batteries isn’t perfect. As a result, they only last for a number of charge/discharge cycles – if that number is low, that means a battery’s use may be limited.
  • High Safety: Batteries are used in consumer goods or for important industrial or government applications – none of these parties want batteries to cause safety issues.
  • Wide Operating Range: Some chemical reactions don’t work well in the cold or heat – that’s why it’s important to have batteries that work in a range of temperatures where it can be useful.
  • No Toxicity: Nickel cadmium batteries are no longer used because of their toxic environmental implications. New batteries to be commercialized must meet stringent standards in these regards.
  • Fast Charging: What good would a smartphone be if it took two full days to recharge? Charge time matters.
  • Low Self-Discharge: All batteries discharge small amounts when left alone over time – the question is how much, and does it make an impact on the usability of the battery?
  • Long Shelf Life: The shelf life of batteries affects the whole supply chain, so it is important that batteries can be usable many years after being manufactured.

There are many pros and cons to consider in choosing a battery type. The more pros that a given battery technology can check off the above list, the more likely it is to be commercially viable.

Now that you know what batteries can and cannot do, we will now look at the rechargeable battery market in Part 3 of the Battery Series.

Subscribe to Visual Capitalist
Click for Comments

Batteries

Visualizing China’s Dominance in Battery Manufacturing (2022-2027P)

This infographic breaks down battery manufacturing capacity by country in 2022 and 2027.

Published

on

battery manufacturing capacity by country infographic

Visualizing China’s Dominance in Battery Manufacturing

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

With the world gearing up for the electric vehicle era, battery manufacturing has become a priority for many nations, including the United States.

However, having entered the race for batteries early, China is far and away in the lead.

Using the data and projections behind BloombergNEF’s lithium-ion supply chain rankings, this infographic visualizes battery manufacturing capacity by country in 2022 and 2027p, highlighting the extent of China’s battery dominance.

Battery Manufacturing Capacity by Country in 2022

In 2022, China had more battery production capacity than the rest of the world combined.

RankCountry2022 Battery Cell
Manufacturing Capacity, GWh
% of Total
#1 🇨🇳 China89377%
#2🇵🇱 Poland736%
#3🇺🇸 U.S.706%
#4🇭🇺 Hungary383%
#5🇩🇪 Germany313%
#6🇸🇪 Sweden161%
#7🇰🇷 South Korea151%
#8🇯🇵 Japan121%
#9🇫🇷 France61%
#10🇮🇳 India30.2%
🌍 Other71%
Total1,163100%

With nearly 900 gigawatt-hours of manufacturing capacity or 77% of the global total, China is home to six of the world’s 10 biggest battery makers. Behind China’s battery dominance is its vertical integration across the rest of the EV supply chain, from mining the metals to producing the EVs. It’s also the largest EV market, accounting for 52% of global sales in 2021.

Poland ranks second with less than one-tenth of China’s capacity. In addition, it hosts LG Energy Solution’s Wroclaw gigafactory, the largest of its kind in Europe and one of the largest in the world. Overall, European countries (including non-EU members) made up just 14% of global battery manufacturing capacity in 2022.

Although it lives in China’s shadow when it comes to batteries, the U.S. is also among the world’s lithium-ion powerhouses. As of 2022, it had eight major operational battery factories, concentrated in the Midwest and the South.

China’s Near-Monopoly Continues Through 2027

Global lithium-ion manufacturing capacity is projected to increase eightfold in the next five years. Here are the top 10 countries by projected battery production capacity in 2027:

RankCountry2027P Battery Cell
Manufacturing Capacity, GWh
% of Total
#1🇨🇳 China6,19769%
#2🇺🇸 U.S.90810%
#3🇩🇪 Germany5036%
#4🇭🇺 Hungary1942%
#5🇸🇪 Sweden1352%
#6🇵🇱 Poland1121%
#7🇨🇦 Canada1061%
#8🇪🇸 Spain981%
#9🇫🇷 France891%
#10 🇲🇽 Mexico801%
🌍 Other5236%
Total8,945100%

China’s well-established advantage is set to continue through 2027, with 69% of the world’s battery manufacturing capacity.

Meanwhile, the U.S. is projected to increase its capacity by more than 10-fold in the next five years. EV tax credits in the Inflation Reduction Act are likely to incentivize battery manufacturing by rewarding EVs made with domestic materials. Alongside Ford and General Motors, Asian companies including Toyota, SK Innovation, and LG Energy Solution have all announced investments in U.S. battery manufacturing in recent months.

Europe will host six of the projected top 10 countries for battery production in 2027. Europe’s current and future battery plants come from a mix of domestic and foreign firms, including Germany’s Volkswagen, China’s CATL, and South Korea’s SK Innovation.

Can Countries Cut Ties With China?

Regardless of the growth in North America and Europe, China’s dominance is unmatched.

Battery manufacturing is just one piece of the puzzle, albeit a major one. Most of the parts and metals that make up a battery—like battery-grade lithium, electrolytes, separators, cathodes, and anodes—are primarily made in China.

Therefore, combating China’s dominance will be expensive. According to Bloomberg, the U.S. and Europe will have to invest $87 billion and $102 billion, respectively, to meet domestic battery demand with fully local supply chains by 2030.

Continue Reading

Subscribe

Popular