Connect with us

Automotive

Ranked: The Autonomous Vehicle Readiness of 20 Countries

Published

on

For the past decade, manufacturers and governments all over the world have been preparing for the adoption of self-driving cars—with the promise of transformative economic development.

As autonomous vehicles become more of a looming certainty, what will be the wider impacts of this monumental transition?

Which Countries are Ready?

Today’s interactive visual from Aquinov Mathappan ranks countries on their preparedness to adopt self-driving cars, while also exploring the range of challenges they will face in achieving complete automation.

The Five Levels of Automation

The graphic above uses the Autonomous Vehicles Readiness Index, which details the five levels of automation. Level 0 vehicles place the responsibility for all menial tasks with the driver, including steering, braking, and acceleration. In contrast, level 5 vehicles demand nothing of the driver and can operate entirely without their presence.

Today, most cars sit between levels 1 and 3, typically with few or limited automated functions. There are some exceptions to the rule, such as certain Tesla models and Google’s Waymo. Both feature a full range of self-driving capabilities—enabling the car to steer, accelerate and brake on behalf of the driver.

The Journey to Personal Driving Freedom

There are three main challenges that come with achieving a fully-automated level 5 status:

  1. Data Storage
    Effectively storing data and translating it into actionable insights is difficult when 4TB of raw data is generated every day—the equivalent of the data generated by 3,000 internet users in 24 hours.
  2. Data Transportation
    Autonomous vehicles need to communicate with each other and transport data with the use of consistently high-speed internet, highlighting the need for large-scale adoption of 5G.
  3. Verifying Deep Neural Networks
    The safety of these vehicles will be dictated by their ability to distinguish between a vehicle and a person, but they currently rely on algorithms which are not yet fully understood.

Which Countries are Leading the Charge?

The 20 countries were selected for the report based on economic size, and their automation progress was ranked using four key metrics: technology and innovation, infrastructure, policy and legislation, and consumer acceptance.

The United States leads the way on technology and innovation, with 163 company headquarters, and more than 50% of cities currently preparing their streets for self-driving vehicles. The Netherlands and Singapore rank in the top three for infrastructure, legislation, and consumer acceptance. Singapore is currently testing a fleet of autonomous buses created by Volvo, which will join the existing public transit fleet in 2022.

India, Mexico, and Russia lag behind on all fronts—despite enthusiasm for self-driving cars, these countries require legislative changes and improvements in the existing quality of roads. Mexico also lacks industrial activity and clear regulations around autonomous vehicles, but close proximity to the U.S. has already garnered interest from companies like Intel for manufacturing autonomous vehicles south of the border.

How Autonomous Vehicles Impact the Economy

Once successfully adopted, autonomous vehicles will save the U.S. economy $1.3 trillion per year, which will come from a variety of sources including:

  • $563 billion: Reduction in accidents
  • $422 billion: Productivity gains
  • $158 billion: Decline in fuel costs
  • $138 billion: Fuel savings from congestion avoidance
  • $11 billion: Improved traffic flow and reduction of energy use
    • With the adoption of autonomous vehicles projected to reduce private car ownership in the U.S. to 43% by 2030, it’s disrupting many other industries in the process.

      • Insurance
        Transportation will be safer, potentially reducing the number of accidents over time. Insurance companies are already rolling out usage-based insurance policies (UBIs), which charge customers based on how many miles they drive and how safe their driving habits are.
      • Travel
        Long distance traveling in autonomous vehicles provides a painless alternative to train and air travel. The vehicles are designed for comfort, making it possible to sleep overnight easily—which could also impact the hotel industry significantly.
      • Real Estate
        An increase in effortless travel could lead to increased urban sprawl, as people prioritize the convenience of proximity to city centers less and less.
        • Defining the parameters for this emerging industry will present significant and unpredictable challenges. Once the initial barriers are eliminated and the technology matures, the world could see a new renaissance of mobility, and the disruption of dozens of other industries as a result.

          Subscribe to Visual Capitalist

          Thank you!
          Given email address is already subscribed, thank you!
          Please provide a valid email address.
          Please complete the CAPTCHA.
          Oops. Something went wrong. Please try again later.

Comments

Energy

Tesla is Now the World’s Most Valuable Automaker

Thanks to a surging stock price, Tesla is now the world’s most valuable automaker – surpassing industry giants Toyota and Volkswagen.

Published

on

tesla most valuable automaker

Tesla is Now the World’s Most Valuable Automaker

Even in the midst of a pandemic, Tesla continues to reach new heights.

The company, which began as a problem-plagued upstart a little over 15 years ago, has now become the world’s most valuable automaker – surpassing industry giants such as Toyota and Volkswagen.

This milestone comes after a year of steady growth, which only hit a speed bump earlier this year due to COVID-19’s negative impact on new car sales. Despite these headwinds, Tesla’s valuation has jumped by an impressive 375% since this time last year.

How does Tesla’s value continue to balloon, despite repeated cries that the company is overvalued? Will shortsellers declare a long-awaited victory, or is there still open road ahead?

Tesla’s Race to the Top

Earlier this year, Tesla hit an impressive milestone, surpassing the value of GM and Ford combined. Since then, the automaker’s stock has continued it’s upward trajectory.

Thanks to the popularity of the Model 3, Tesla sold more cars in 2019 than it did in the previous two years combined:

tesla auto deliveries by quarter

As well, the company is taking big steps to up its production capacity.

Austin, Texas and Tulsa, Oklahoma are currently rolling out the incentives to attract Tesla’s new U.S.-based factory. The company is also increasing its global presence with the construction of Giga Berlin, it’s first European production facility, as well as completing the ongoing expansion of its Giga Shanghai facility in China.

Battle of the Namesakes

Tesla’s most recent price bump was fueled in part by a leaked internal memo from Tesla’s CEO, Elon Musk, urging the company’s staff to go “all out” on bringing electric semi trucks to the global market at scale.

It’s time to go all out and bring the Tesla Semi to volume production.

– Elon Musk

Of course, Musk’s enthusiasm for semi trucks isn’t coming from nowhere. Another company, Nikola (also named after famed inventor Nikola Tesla), is focused on electrifying the two million or so semi trucks in operation in the U.S. market.

Although Nikola has yet to produce a vehicle, its market cap has surged to $24 billion – which puts its valuation nearly on par with Ford. Much like Tesla, the company already has preorders from major companies looking to add electric-powered trucks to their delivery fleets.

For major brands looking to hit ESG targets, zero-emission heavy-duty trucks is an easy solution, particularly if the vehicles also live up to claims of being cheaper over the vehicle’s lifecycle. The big question is which automaker will capitalize on this mega market first?

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Energy

6 Ways Hydrogen and Fuel Cells Can Help Transition to Clean Energy

Here are six reasons why hydrogen and fuel cells can be a fit for helping with the transition to a lower-emission energy mix.

Published

on

Hydrogen and fuel cells

While fossil fuels offer an easily transportable, affordable, and energy-dense fuel for everyday use, the burning of this fuel creates pollutants, which can concentrate in city centers degrading the quality of air and life for residents.

The world is looking for alternative ways to ensure the mobility of people and goods with different power sources, and electric vehicles have high potential to fill this need.

But did you know that not all electric vehicles produce their electricity in the same way?

Hydrogen: An Alternative Vision for the EV

The world obsesses over battery technology and manufacturers such as Tesla, but there is an alternative fuel that powers rocket ships and is road-ready. Hydrogen is set to become an important fuel in the clean energy mix of the future.

Today’s infographic comes from the Canadian Hydrogen and Fuel Cell Association (CHFCA) and it outlines the case for hydrogen.

6 Ways Hydrogen and Fuel Cells Can Help Transition to Clean Energy

Hydrogen Supply and Demand

Some scientists have made the argument that it was not hydrogen that caused the infamous Hindenburg to burst into flames. Instead, the powdered aluminum coating of the zeppelin, which provided its silver look, was the culprit. Essentially, the chemical compound coating the dirigibles was a crude form of rocket fuel.

Industry and business have safely used, stored, and transported hydrogen for 50 years, while hydrogen-powered electric vehicles have a proven safety record with over 10 million miles of operation. In fact, hydrogen has several properties that make it safer than fossil fuels:

  • 14 times lighter than air and disperses quickly
  • Flames have low radiant heat
  • Less combustible
  • Non-toxic

Since hydrogen is the most abundant chemical element in the universe, it can be produced almost anywhere with a variety of methods, including from fuels such as natural gas, oil, or coal, and through electrolysis. Fossil fuels can be treated with extreme temperatures to break their hydrocarbon bonds, releasing hydrogen as a byproduct. The latter method uses electricity to split water into hydrogen and oxygen.

Both methods produce hydrogen for storage, and later consumption in an electric fuel cell.

Fuel Cell or Battery?

Battery and hydrogen-powered vehicles have the same goal: to reduce the environmental impact from oil consumption. There are two ways to measure the environmental impact of vehicles, from “Well to Wheels” and from “Cradle to Grave”.

Well to wheels refers to the total emissions from the production of fuel to its use in everyday life. Meanwhile, cradle to grave includes the vehicle’s production, operation, and eventual destruction.

According to one study, both of these measurements show that hydrogen-powered fuel cells significantly reduce greenhouse gas emissions and air pollutants. For every kilometer a hydrogen-powered vehicle drives it produces only 2.7 grams per kilometer (g/km) of carbon dioxide while a battery electric vehicle produces 20 g/km.

During everyday use, both options offer zero emissions, high efficiency, an electric drive, and low noise, but hydrogen offers weight-saving advantages that battery-powered vehicles do not.

In one comparison, Toyota’s Mirai had a maximum driving range of 312 miles, 41% further than Tesla’s Model 3 220-mile range. The Mirai can refuel in minutes, while the Model 3 has to recharge in 8.5 hours for only a 45% charge at a specially configured quick charge station not widely available.

However, the world still lacks the significant infrastructure to make this hydrogen-fueled future possible.

Hydrogen Infrastructure

Large scale production delivers economic amounts of hydrogen. In order to achieve this scale, an extensive infrastructure of pipelines and fueling stations are required. However to build this, the world needs global coordination and action.

Countries around the world are laying the foundations for a hydrogen future. In 2017, CEOs from around the word formed the Hydrogen Council with the mission to accelerate the investment in hydrogen.

Globally, countries have announced plans to build 2,800 hydrogen refueling stations by 2025. German pipeline operators presented a plan to create a 1,200-kilometer grid by 2030 to transport hydrogen across the country, which would be the world’s largest in planning.

Fuel cell technology is road-ready with hydrogen infrastructure rapidly catching up. Hydrogen can deliver the power for a new clear energy era.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Subscribe

Join the 200,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular