The New Energy Era: The Lithium-Ion Supply Chain - Visual Capitalist
Connect with us

Mining

The New Energy Era: The Lithium-Ion Supply Chain

Published

on

The world is rapidly shifting to renewable energy technologies.

Battery minerals are set to become the new oil, with lithium-ion battery supply chains becoming the new pipelines.

China is currently leading this lithium-ion battery revolution—leaving the U.S. dependent on its economic rival. However, the harsh lessons of the 1970-80s oil crises have increased pressure on the U.S. to develop its own domestic energy supply chain and gain access to key battery metals.

Introducing the New Energy Era

Today’s infographic from Standard Lithium explores the current energy landscape and America’s position in the new energy era.

lithium ion supply chain us china

An Energy Dependence Problem

Energy dependence is the degree of a nation’s reliance on imported energy, resulting from an insufficient domestic supply. Oil crises in the 1970-80s revealed America’s reliance on foreign produced oil, especially from the Middle East.

The U.S. economy ground to a halt when gas prices soared during the 1973 oil crisis—altering consumer behavior and energy policy for generations. In the aftermath of the crisis, the government imposed national speed limits to conserve oil, and also demanded cheaper, smaller, and more fuel-efficient cars.

U.S. administrations set an objective to wean America off foreign oil through “energy independence”—the ability to meet the country’s fuel needs using domestic resources.

Lessons Learned?

Spurred by technological breakthroughs such as hydraulic fracking, the U.S. now has the capacity to respond to high oil prices by ramping up domestic production.

By the end of 2019, total U.S. oil production could rise to 17.4 million barrels a day. At that level, American net imports of petroleum could fall in December 2019 to 320,000 barrels a day, the lowest since 1949.

In fact, the successful development of America’s shale fields is a key reason why the Organization of the Petroleum Exporting Countries (OPEC) has lost the majority of its influence over the supply and price of oil.

A Renewable Future: Turning the Ship

The increasing scarcity of economic oil and gas fields, combined with the negative environmental impacts of oil and the declining costs of renewable power, are creating a new energy supply and demand dynamic.

Oil demand could drop by 16.5 million barrels per day. Oil producers could face significant losses, with $380 billion of above-ground investments becoming worthless if the oil industry and oil-rich nations are not prepared for a surge in green energy by 2030.

Energy companies are hedging their risk with increased investment in renewables. The world’s top 24 publicly-listed oil companies spent on average 1.3% of their total budgets on low carbon technology in 2018, amounting to $260 billion. That is double the 0.68% the same group had invested on average through the period of 2010 and 2017.

The New Geopolitics of Energy: Battery Minerals

Low carbon technologies for the new energy era are also creating a demand for specific materials and new supply chains that can procure them.

Renewable and low carbon technology will be mineral intensive, requiring many metals such as lithium, cobalt, graphite and nickel. These are key raw materials, and demand will only grow.

Material201820282018-2028 % Growth
Graphite anode in Batteries170,000 tonnes2.05M tonnes1,106%
Lithium in batteries150,000 tonnes1.89M tonnes1,160%
Nickel in batteries82,000 tonnes1.09M tonnes1,229%
Cobalt in batteries58,000 tonnes320,000 tonnes452%
(Source: Benchmark Minerals)

The cost of these materials is the largest factor in battery technology, and will determine whether battery supply chains succeed or fail.

China currently dominates the lithium-ion battery supply chain, and could continue to do so. This leaves the U.S. dependent on China as we venture into this new era.

Could history repeat itself?

The Battery Metals Race

There are five stages in a lithium-ion battery supply chain—and the U.S. holds a smaller percentage of the global supply chain than China at nearly every stage.

Lithium-Ion Supply Chain

China’s dominance of the global battery supply chain creates a competitive advantage that the U.S. has no choice but to rely on.

However, this can still be prevented if the United States moves fast. From natural resources, human capital and the technology, the U.S. can build its own domestic supply.

Building the U.S. Battery Supply Chain

The U.S. relies heavily on imports of several keys materials necessary for a lithium-ion battery supply chain.

U.S. Net Import Dependence
Lithum50%
Cobalt72%
Graphite100%
(Source: U.S. Department of the Interior, Bureau of Land Management)

But the U.S. is making strides to secure its place in the new energy era. The American Minerals Security Act seeks to identify the resources necessary to secure America’s mineral independence.

The government has also released a list of 35 minerals it deems critical to the national interest.

Declaring U.S. Battery Independence

A supply chain starts with raw materials, and the U.S. has the resources necessary to build its own battery supply chain. This would help the country avoid supply disruptions like those seen during the oil crises in the 1970s.

Battery metals are becoming the new oil and supply chains the new pipelines. It is still early in this new energy era, and the victors are yet to be determined in the battery arms race.

Click for Comments

Energy

The Periodic Table of Endangered Elements

90 different elements form the building blocks for everything on Earth. Some are being used up, and soon could be endangered.

Published

on

The Periodic Table of Endangered Elements

The building blocks for everything on Earth are made from 90 different naturally occurring elements.

This visualization made by the European Chemical Society (EuChemS), shows a periodic table of these 90 different elements, highlighting which ones are in abundance and which ones are in serious threat as of 2021.

On the graphic, the area of each element relates to its number of atoms on a logarithmic scale. The color-coding shows whether there’s enough of each element, or whether the element is becoming scarce, based on current consumption levels.

ElementFull NameStatus
AcActiniumPlentiful supply
AgSilverSerious threat
AIAluminumPlentiful supply
ArArgonPlentiful supply
AsArsenicSerious threat
AtAstatinePlentiful supply
AuGoldLimited availability
BBoronLimited availability
BaBariumPlentiful supply
BeBerylliumPlentiful supply
BiBismuthLimited availability
BrBrominePlentiful supply
CCarbonPlentiful supply / serious threat
CaCalciumPlentiful supply
CdCadmiumRising threat
CeCeriumPlentiful supply
CIChlorinePlentiful supply
CoCobaltRising threat
CrChromiumRising threat
CsCesiumPlentiful supply
CuCopperRising threat
DyDysprosiumRising threat
ErErbiumPlentiful supply
EuEuropiumPlentiful supply
FFlourinePlentiful supply
FeIronPlentiful supply
FrFranciumPlentiful supply
GaGalliumSerious threat
GdGadoliniumPlentiful supply
GeGermaniumSerious threat
HHydrogenPlentiful supply
HeHeliumSerious threat
HfHafniumSerious threat
HgMercuryLimited availability
HoHolmiumPlentiful supply
IIodinePlentiful supply
InIndiumSerious threat
IrIridiumRising threat
KPotassiumPlentiful supply
KrKryptonPlentiful supply
LaLanthanumPlentiful supply
LiLithiumLimited availability
LuLutetiumPlentiful supply
MgMagnesiumLimited availability
MnManganeseLimited availability
MoMolybdenumLimited availability
NNitrogenPlentiful supply
NaSodiumPlentiful supply
NbNiobiumLimited availability
NdNeodymiumLimited availability
NeNeonPlentify supply
NiNickelLimited availability
OOxygenPlentiful supply
OsOsmiumRising threat
PPhosphorusLimited availability
PaProtactiniumPlentiful supply
PbLeadLimited availability
PdPalladiumRising threat
PoPoloniumPlentiful supply
PrPraseodymiumPlentiful supply
PtPlatinumRising threat
RaRadiumPlentiful supply
RbRubidiumPlentiful supply
ReRheniumPlentiful supply
RhRhodiumRising threat
RnRadonPlentify supply
RuRutheniumRising threat
SbAntimonyLimited availability
ScScandiumLimited availability
SeSeleniumLimited availability
SiSiliconPlentiful supply
SSulfurPlentiful supply
SmSamariumPlentiful supply
SnTinLimited availability
SrStrontiumSerious threat
TaTantalumSerious threat
TbTerbiumPlentiful supply
TeTelluriumSerious threat
TiTitaniumPlentiful supply
TIThaliumLimited availability
TmThuliumPlentiful supply
VVanadiumLimited availability
WTungstenLimited availability
XeXenonPlentiful supply
YYttriumSerious threat
YbYtterbiumPlentiful supply
ZnZincSerious threat
ZrZirconiumLimited availability
ThThoriumPlentiful supply
UUraniumRising threat

While these elements don’t technically run out and instead transform (except for helium, which rises and escapes from Earth’s atmosphere), some are being used up exceptionally fast, to the point where they may soon become extremely scarce.

One element worth pointing out on the graphic is carbon, which is three different colors: green, red, and dark gray.

  • Green, because carbon is in abundance (to a fault) in the form of carbon dioxide
  • Red, because it will soon cause a number of cataphoric problems if consumption habits don’t change
  • Gray because carbon-based fuels often come from conflict countries

For more elements-related content, check out our channel dedicated to raw materials and the megatrends that drive them, VC Elements.

Continue Reading

Mining

Mapped: The 10 Largest Gold Mines in the World, by Production

Gold mining companies produced over 3,500 tonnes of gold in 2021. Where in the world are the largest gold mines?

Published

on

The 10 Largest Gold Mines in the World, by Production

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Gold mining is a global business, with hundreds of mining companies digging for the precious metal in dozens of countries.

But where exactly are the largest gold mines in the world?

The above infographic uses data compiled from S&P Global Market Intelligence and company reports to map the top 10 gold-producing mines in 2021.

Editor’s Note: The article uses publicly available global production data from the World Gold Council to calculate the production share of each mine. The percentages slightly differ from those calculated by S&P.

The Top Gold Mines in 2021

The 10 largest gold mines are located across nine different countries in North America, Oceania, Africa, and Asia.

Together, they accounted for around 13 million ounces or 12% of global gold production in 2021.

RankMineLocationProduction (ounces)% of global production
#1Nevada Gold Mines🇺🇸 U.S. 3,311,0002.9%
#2Muruntau🇺🇿 Uzbekistan 2,990,0202.6%
#3Grasberg🇮🇩 Indonesia 1,370,0001.2%
#4Olimpiada🇷🇺 Russia 1,184,0681.0%
#5Pueblo Viejo🇩🇴 Dominican Republic 814,0000.7%
#6Kibali🇨🇩 Democratic Republic of the Congo 812,0000.7%
#7Cadia🇦🇺 Australia 764,8950.7%
#8Lihir🇵🇬 Papua New Guinea 737,0820.6%
#9Canadian Malartic🇨🇦 Canada 714,7840.6%
#10Boddington🇦🇺 Australia 696,0000.6%
N/ATotalN/A13,393,84911.7%

Share of global gold production is based on 3,561 tonnes (114.5 million troy ounces) of 2021 production as per the World Gold Council.

In 2019, the world’s two largest gold miners—Barrick Gold and Newmont Corporation—announced a historic joint venture combining their operations in Nevada. The resulting joint corporation, Nevada Gold Mines, is now the world’s largest gold mining complex with six mines churning out over 3.3 million ounces annually.

Uzbekistan’s state-owned Muruntau mine, one of the world’s deepest open-pit operations, produced just under 3 million ounces, making it the second-largest gold mine. Muruntau represents over 80% of Uzbekistan’s overall gold production.

Only two other mines—Grasberg and Olimpiada—produced more than 1 million ounces of gold in 2021. Grasberg is not only the third-largest gold mine but also one of the largest copper mines in the world. Olimpiada, owned by Russian gold mining giant Polyus, holds around 26 million ounces of gold reserves.

Polyus was also recently crowned the biggest miner in terms of gold reserves globally, holding over 104 million ounces of proven and probable gold between all deposits.

How Profitable is Gold Mining?

The price of gold is up by around 50% since 2016, and it’s hovering near the all-time high of $2,000/oz.

That’s good news for gold miners, who achieved record-high profit margins in 2020. For every ounce of gold produced in 2020, gold miners pocketed $828 on average, significantly higher than the previous high of $666/oz set in 2011.

With inflation rates hitting decade-highs in several countries, gold mining could be a sector to watch, especially given gold’s status as a traditional inflation hedge.

Continue Reading

Subscribe

Popular