Connect with us

Batteries

Visualizing U.S. Energy Consumption in One Chart

Published

on

Visualizing U.S. Energy Consumption in One Chart

Visualizing U.S. Energy Consumption in One Chart

Every year, the Lawrence Livermore National Laboratory, a federal research facility funded by the Department of Energy and UC Berkeley, puts out a fascinating Sankey diagram that shows the fate of all energy that gets generated and consumed in the United States in a given year.

Today’s visualization is the summary of energy consumption for 2017, but you can see previous years going all the way back to 2010 on their website.

Dealing in Quads

The first thing you’ll notice about this Sankey is that it uses an unfamiliar unit of measurement: the quad.

Each quad is equal to a quadrillion BTUs, and it’s roughly comparable to the following:

  • 8,007,000,000 gallons (US) of gasoline
  • 293,071,000,000 kilowatt-hours (kWh)
  • 36,000,000 tonnes of coal
  • 970,434,000,000 cubic feet of natural gas
  • 25,200,000 tonnes of oil
  • 252,000,000 tonnes of TNT
  • 13.3 tonnes of uranium-235

Put another way, a quad is a massive unit that only is useful in measuring something like national energy consumption – and in this case, the total amount of energy used by the country was 97.7 quadrillion BTUs.

Energy Wasted

On the diagram, one thing that is immediately noticeable is that a whopping 68% of all energy is actually rejected energy, or energy that gets wasted through various inefficiencies.

It’s quite eye-opening to look at this data sorted by sector:

SectorEnd-Use EfficiencyRejected Energy (Quads)
Residential65%3.75
Commercial65%3.15
Industrial49%12.9
Transportation21%22.2

The transportation sector used 28.1 quads of energy in 2017, about 28.8% of the total consumption. However, it wasted 22.2 quads of that energy with its poor efficiency rate, which made for more rejected energy than the other three sectors combined.

This wastage and inefficiency in the transportation sector provides an interesting lens from which to view the green energy revolution, and it also helps explain the vision that Elon Musk has for the future of Tesla.

A Ways to Go

The last time we posted a version of this visualization was for the 2015 edition of the diagram, and we noted that renewables had a ways to go as a factor in the whole energy mix.

Here are how things have changed over the last two years:

Energy2015 (Quads)2017 (Quads)2-yr change
Petroleum35.436.22.3%
Natural Gas28.328.0-1.1%
Coal15.714.0-10.8%
Nuclear8.348.421.0%
Biomass4.724.914.0%
Hydro2.392.7715.9%
Wind1.822.3529.1%
Solar0.5320.77545.7%
Geothermal0.2240.211-5.8%

As you can see, solar and wind consumption are jumping considerably – but in absolute terms, our note from two years ago still remains true.

To make the desired impact, renewable energy still has a ways to go.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Comments

Batteries

Visualizing Copper’s Role in the Transition to Clean Energy

A clean energy transition is underway as wind, solar, and batteries take center stage. Here’s how copper plays the critical role in these technologies.

Published

on

A future powered by renewables is not in the distant horizon, but rather in its early hours.

This new dawn comes from a global awareness of the environmental impacts of the current energy mix, which relies heavily on fossil fuels and their associated greenhouse gas emissions.

Technologies such as wind, solar, and batteries offer renewable and clean alternatives and are leading the way for the transition to clean energy. However, as with every energy transition, there are not only new technologies, but also new material demands.

Copper: A Key Piece of the Puzzle

This energy transition will be mineral intensive and it will require metals such as nickel, lithium, and cobalt. However, one metal stands out as being particularly important, and that is copper.

Today’s infographic comes to us from the Copper Development Association and outlines the special role of copper in renewable power generation, energy storage, and electric vehicles.

Copper and the Clean Energy Transition

Why Copper?

The red metal has four key properties that make it ideal for the clean energy transition.

  1. Conductivity
  2. Ductility
  3. Efficiency
  4. Recyclability

It is these properties that make copper the critical material for wind and solar technology, energy storage, and electric vehicles.

It’s also why, according to ThinkCopper, the generation of electricity from solar and wind uses four to six times more copper than fossil fuel sources.

Copper in Wind

A three-megawatt wind turbine can contain up to 4.7 tons of copper with 53% of that demand coming from the cable and wiring, 24% from the turbine/power generation components, 4% from transformers, and 19% from turbine transformers.

The use of copper significantly increases when going offshore. That’s because onshore wind farms use approximately 7,766 lbs of copper per MW, while an offshore wind installation uses 21,068 lbs of copper per MW.

It is the cabling of the offshore wind farms to connect them to each other and to deliver the power that accounts for the bulk of the copper usage.

Copper in Solar

Solar power systems can contain approximately 5.5 tons of copper per MW. Copper is in the heat exchangers of solar thermal units as well as in the wiring and cabling that transmits the electricity in photovoltaic solar cells.

Navigant Research projects that 262 GW of new solar installations between 2018 and 2027 in North America will require 1.9 billion lbs of copper.

Copper in Energy Storage

There are many ways to store energy, but every method uses copper. For example, a lithium ion battery contains 440 lbs of copper per MW and a flow battery 540 lbs of copper per MW.

Copper wiring and cabling connects renewable power generation with energy storage, while the copper in the switches of transformers help to deliver power at the right voltage.

Across the United States, a total of 5,752 MW of energy capacity has been announced and commissioned.

Copper in Electric Vehicles

Copper is at the heart of the electric vehicle (EV). This is because EVs rely on copper for the motor coil that drives the engine.

The more electric the car, the more copper it needs; a car powered by an internal combustion engine contains roughly 48 lbs, a hybrid needs 88 lbs, and a battery electric vehicle uses 184 lbs.

Additionally, the cabling for charging stations of electric vehicles will be another source of copper demand.

The Copper Future

Advances in technologies create new material demands.

Therefore, it shouldn’t be surprising that the transition to renewables is going to create demand for many minerals – and copper is going to be a critical mineral for the new era of energy.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Automotive

How Much Oil is in an Electric Vehicle?

It is counterintuitive, but electric vehicles are not possible without oil – these petrochemicals bring down the weight of cars to make EVs possible.

Published

on

How Much Oil is in an Electric Vehicle?

When most people think about oil and natural gas, the first thing that comes to mind is the gas in the tank of their car. But there is actually much more to oil’s role, than meets the eye…

Oil, along with natural gas, has hundreds of different uses in a modern vehicle through petrochemicals.

Today’s infographic comes to us from American Fuel & Petrochemicals Manufacturers, and covers why oil is a critical material in making the EV revolution possible.

Pliable Properties

It turns out the many everyday materials we rely on from synthetic rubber to plastics to lubricants all come from petrochemicals.

The use of various polymers and plastics has several advantages for manufacturers and consumers:

  1. Lightweight
  2. Inexpensive
  3. Plentiful
  4. Easy to Shape
  5. Durable
  6. Flame Retardant

Today, plastics can make up to 50% of a vehicle’s volume but only 10% of its weight. These plastics can be as strong as steel, but light enough to save on fuel and still maintain structural integrity.

This was not always the case, as oil’s use has evolved and grown over time.

Not Your Granddaddy’s Caddy

Plastics were not always a critical material in auto manufacturing industry, but over time plastics such as polypropylene and polyurethane became indispensable in the production of cars.

Rolls Royce was one of the first car manufacturers to boast about the use of plastics in its car interior. Over time, plastics have evolved into a critical material for reducing the overall weight of vehicles, allowing for more power and conveniences.

Timeline:

  • 1916
    Rolls Royce uses phenol formaldehyde resin in its car interiors
  • 1941
    Henry Ford experiments with an “all-plastic” car
  • 1960
    About 20 lbs. of plastics is used in the average car
  • 1970
    Manufacturers begin using plastic for interior decorations
  • 1980
    Headlights, bumpers, fenders and tailgates become plastic
  • 2000
    Engineered polymers first appear in semi-structural parts of the vehicle
  • Present
    The average car uses over 1000 plastic parts

Electric Dreams: Petrochemicals for EV Innovation

Plastics and other materials made using petrochemicals make vehicles more efficient by reducing a vehicle’s weight, and this comes at a very reasonable cost.

For every 10% in weight reduction, the fuel economy of a car improves roughly 5% to 7%. EV’s need to achieve weight reductions because the battery packs that power them can weigh over 1000 lbs, requiring more power.

Today, plastics and polymers are used for hundreds of individual parts in an electric vehicle.

Oil and the EV Future

Oil is most known as a source of fuel, but petrochemicals also have many other useful physical properties.

In fact, petrochemicals will play a critical role in the mass adoption of electric vehicles by reducing their weight and improving their ranges and efficiency. In According to IHS Chemical, the average car will use 775 lbs of plastic by 2020.

Although it seems counterintuitive, petrochemicals derived from oil and natural gas make the major advancements by today’s EVs possible – and the continued use of petrochemicals will mean that both EVS and traditional vehicles will become even lighter, faster, and more efficient.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Siyata Mobile Company Spotlight

Subscribe

Join the 120,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular