See All U.S. Energy Consumption in One Giant Flow Diagram
Connect with us

Energy

All U.S. Energy Consumption in a Giant Diagram

Published

on

All U.S. Energy Consumption in a Big Diagram

All U.S. Energy Consumption in a Giant Diagram

Today’s graphic is special type of flow chart, called a Sankey diagram.

This particular one shows the total estimated energy consumption in the United States in 2015, and how energy flowed from source to the final destination. The graphic comes to us from the Lawrence Livermore National Laboratory and the Department of Energy.

The beauty of a Sankey is in its simplicity and and effectiveness. No information is left out, and we can really see the full energy picture from a 10,000 foot view.

Wasted Effort

The U.S. is estimated to have consumed 97.5 quads of energy in 2015.

What’s a quad? It’s equal to a quadrillion BTUs, which is roughly comparable to any of these:

  • 8,007,000,000 gallons (US) of gasoline
  • 293,071,000,000 kilowatt-hours (kWh)
  • 36,000,000 tonnes of coal
  • 970,434,000,000 cubic feet of natural gas
  • 25,200,000 tonnes of oil
  • 252,000,000 tonnes of TNT
  • 13.3 tonnes of uranium-235

It’s a lot of energy – and if you look at the diagram, you’ll see most of it is actually wasted.

It’s estimated that 59.1 quads (60.6% of all energy) is “rejected energy”, a fancy term for energy that is produced but not used in an effective way. For example, when gasoline is burned in a car, most of the energy comes off as heat instead of doing productive work (ie. turning the crank shaft). The average internal combustion engine is only 20% efficient, and people get excited even when they approach 40% efficiency.

While gas engines are horribly inefficient, so are other energy sources. If you look at electricity production on the diagram, you’ll see that 67% of all energy going to generate electricity is wasted.

It’s the laws of physics, but there are still many areas for improvement to increase this efficiency.

A Long Way to Go for Green Energy

As we explained in Part 2 of our Battery Series, there are still some big obstacles to overcome for green energy, batteries, and energy storage.

By looking at all energy use (including non-electrical energy used in automobiles, industrial, etc.), this diagram helps put things in even more perspective. To make a big impact, green energy not only has to make inroads in electrical generation, but it also has to supplant the 25.4 quads of energy being used in the automotive sector. This is why projects like the massive Tesla Gigafactory 1 are such a big deal. If Elon Musk is successful in his mission, the whole diagram and our energy mix would change dramatically.

For now, however, green is still a blip on the radar. Looking at total energy consumption in 2015, solar only accounted for 0.53 quads of energy. Meanwhile, wind accounted for 1.82 quads.

Subscribe to Visual Capitalist
Click for Comments

Energy

Green Steel: Decarbonising with Hydrogen-Fueled Production

How will high emission industries respond to climate change? We highlight industrial emissions and hydrogen’s role in green steel production.

Published

on

This infographic highlights industrial emissions and hydrogen's role in green steel production.
The following content is sponsored by AFRY
This infographic highlights industrial emissions and hydrogen's role in green steel production.

Green Steel: Decarbonising with Hydrogen-Fueled Production

As the fight against climate change ramps up worldwide, the need for industries and economies to respond is immediate.

Of course, different sectors contribute different amounts of greenhouse gas (GHG) emissions, and face different paths to decarbonisation as a result. One massive player? Steel and iron manufacturing, where energy-related emissions account for roughly 6.1% of global emissions.

The following infographic by AFRY highlights the need for steel manufacturing to evolve and decarbonise, and how hydrogen can play a vital role in the “green” steel revolution.

The Modern Steel Production Landscape

Globally, crude steel production totalled 1,951 million tonnes (Mt) in 2021.

This production is spread all over the world, including India, Japan, and the U.S., with the vast majority (1,033 million tonnes) concentrated in China.

But despite being produced in many different places globally, only two main methods of steel production have been honed and utilised over time—electric arc furnace (EAF) and blast furnace basic oxygen furnace (BF-BOF) production.

Both methods traditionally use fossil fuels, and in 2019 contributed 3.6 Gt of carbon dioxide (CO2) emissions:

Steel Production MethodMaterials UtilisedCO2 Emissions (2019)
EAFScrap0.5 Gt
BF-BOFScrap, iron ore, coke3.1 Gt

That’s why one of the main ways the steel industry can decarbonise is through the replacement of fossil fuels.

Hydrogen’s Role in Green Steel Production

Of course, one of the biggest challenges facing the industry is how to decarbonise and produce “green” steel in an extremely competitive market.

As a globally-traded good with fine cost margins, steel production has been associated with major geopolitical issues, including trade disputes and tariffs. But because of climate change, there is also a sudden and massive demand for carbon-friendly production.

And that’s where hydrogen plays a key role. Steel traditionally made in a blast furnace uses coke—a high-carbon fuel made by heating coal without air—as a fuel source to heat iron ore pellets and liquify the pure iron component. This expels a lot of emissions in order to get the iron hot enough to melt (1,200 °C) and be mixed with scrap and made into steel.

The green steel method instead uses hydrogen to reduce the iron pellets into sponge iron, metallic iron that can then be processed to form steel. This process is also done at high temperature but below the melting point of iron (800 – 1,200 °C), saving energy costs.

And by introducing non-fossil fuels to create iron pellets and renewable electricity to turn the sponge iron and scrap into steel, fossil fuels can be removed from the process, significantly reducing emissions as a result.

The Future of Green Steel Production

Given the massive global demand for steel, the need for hydrogen and renewable energy required for green steel production is just as significant.

According to AFRY and the International Renewable Energy Agency, meeting global steel production in 2021 using the green steel method would require 97.6 million tonnes of hydrogen.

And for a truly carbon-free transition to green steel, the energy industry will also need to focus on green hydrogen production using electrolysis. Unlike methods which burn natural gas to release hydrogen, electrolysis entails the splitting of water (H2O) into oxygen and hydrogen using renewable energy sources.

Full green steel production would therefore use green hydrogen, electrolysers running on renewables, and additional renewables for all parts of the supply chain:

Steel Production SourceAnnual Steel ProductionGreen Hydrogen RequiredElectrolyser Capacity RequiredTotal Renewables Capacity Required
Base Reference1 Mt50 kT0.56 GW0.7 GW
U.S.85.8 Mt4.3 Mt48 GW60 GW
Europe103 Mt5.2 Mt58 GW72 GW
China1032.8 Mt51.6 Mt581 GW726 GW
Global1951 Mt97.6 Mt1,097 GW1,371 GW

Currently, green hydrogen production costs are higher than traditional fossil fuel methods, and are dependent on the levelised costs of renewable energy sources. This means they vary by region, but also that they will reduce as production capacity and subsidies for renewables and green hydrogen increase.

And many major European steel manufacturers are already leading the way with pilot and large scale facilities for green steel production. Germany alone has at least seven projects in the works, including by ArcelorMittal and ThyssenKrupp, two of the world’s 10 largest steelmakers by revenue.

AFRY is a thought leadership firm that provides companies with advisory services and sustainable solutions, in their efforts to fight climate change and lead them towards a greater future.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Energy

Charted: 40 Years of Global Energy Production, by Country

Here’s a snapshot of global energy production, and which countries have produced the most fossil fuels, nuclear, and renewable energy since 1980.

Published

on

The Biggest Energy Producers since 1980

Energy was already a hot topic before 2022, but soaring household energy bills and a cost of living crisis has brought it even more to the forefront.

Which countries are the biggest energy producers, and what types of energy are they churning out? This graphic by 911 Metallurgist gives a breakdown of global energy production, showing which countries have used the most fossil fuels, nuclear, and renewable energy since 1980.

All figures refer to the British thermal unit (BTU), equivalent to the heat required to heat one pound of water by one degree Fahrenheit.

Editor’s note: Click on any graphic to see a full-width version that is higher resolution

1. Fossil Fuels

Biggest Producers of Fossil Fuel since 1980

View the full-size infographic

While the U.S. is a dominant player in both oil and natural gas production, China holds the top spot as the world’s largest fossil fuel producer, largely because of its significant production and consumption of coal.

Over the last decade, China has used more coal than the rest of the world, combined.

However, it’s worth noting that the country’s fossil fuel consumption and production have dipped in recent years, ever since the government launched a five-year plan back in 2014 to help reduce carbon emissions.

2. Nuclear Power

Biggest Producers of Nuclear Energy since 1980

View the full-size infographic

The U.S. is the world’s largest producer of nuclear power by far, generating about double the amount of nuclear energy as France, the second-largest producer.

While nuclear power provides a carbon-free alternative to fossil fuels, the nuclear disaster in Fukushima caused many countries to move away from the energy source, which is why global use has dipped in recent years.

Despite the fact that many countries have recently pivoted away from nuclear energy, it still powers about 10% of the world’s electricity. It’s also possible that nuclear energy will play an expanded role in the energy mix going forward, since decarbonization has emerged as a top priority for nations around the world.

3. Renewable Energy

Biggest Producers of Renewable Energy

View the full-size infographic

Renewable energy sources (including wind, hydro, and solar) account for about 23% of electricity production worldwide. China leads the front on renewable production, while the U.S. comes in second place.

While renewable energy production has ramped up in recent years, more countries will need to ramp up their renewable energy production in order to reach net-zero targets by 2050.

Continue Reading

Subscribe

Popular