Connect with us

Base Metals

The Story of Voisey’s Bay: The Auction (Part 2 of 3)

Published

on

Part 1: The DiscoveryPart 2: The AuctionPart 3: Voisey's Today

The Story of Voisey's Bay: The Auction (Part 2 of 3)

Part 1: The DiscoveryPart 2: The AuctionPart 3: Voisey's Today

The Story of Voisey’s Bay: The Auction (Part 2 of 3)

Presented by: Equitas Resources, “Nickel exploration in Labrador”

Preface

The hit at diamond drill hole #2 of 33m of massive sulphides turned Voisey’s Bay from caribou pasture to one of the most exciting stories in the mining world. For a full recap of the events leading to this point, check out Part 1 of the Voisey’s Bay story.

In Part 2 of this series, we look at the ensuing bidding war that occurred once it was clear that Voisey’s Bay had all of the action. Again, we have turned to Jacquie McNish’s fabulous book The Big Score, which documents the history of the discovery, biographical elements of Robert Friedland’s life, and the ensuing bidding war between Inco and Falconbridge that led to one of the most spectacular takeovers in mining history. If you like these infographics, then look into buying Jacquie’s book. It was gripping and full of information.

Setting the Stage

The discovery of massive sulphides with Hole #2 brought increased attention to the former diamond play. However, the stock price didn’t really explode until the assays came in: 2.23% nickel, 1.47% copper, and 0.123% cobalt. Diamond Fields now traded in December 1994 at $13.50 per share, up from $4.65 just a month prior.

The company doubled down on drilling, and up until January 1995 they had hit nothing after Hole #2. The price dribbled down to $11.00.

However, it was in February 1995 that the results for Holes #7 and #8 were released, and they were some of the most significant holes for the entire project. The holes were in the Ovoid, which would soon be a famed and ultra-high rich section of the Voisey’s Bay discovery.

Hole #7 was 104m long and had 3.9% nickel, 2.8% copper, and 0.14% cobalt. Hole #8 was 111m long and had 3.7% nickel, 2.78% copper, and 0.13% cobalt. This propelled the stock price to $20.00 in February 1995.

Continued exploration of the Ovoid revealed a bowl-shaped orebody lying just below surface. This deposit had surface dimensions of some 800m by 350m, and extended to depths of about 125m. More nickel from Ovoid came in every month, and the stock price continued to rise.

At this point, Diamond Fields could no longer fly under the radar. Major mining couldn’t stand to watch as one of the world’s greatest base metal deposits blossomed outside of their influence.

The Suitors

Three major mining companies vied to get in on the action. Here’s some history on each of them:

Teck

At this time, the Canadian diversified mining company Teck had nine mines in operation and had a reputation as a swift deal maker.

  • In 1947, Teck’s founder Norman Keevil Sr. was one of the first to use magnetic survey technology that was first employed by the US Military to find submarines. With this technology, he found one of the richest copper deposits in Canada.
  • He once impressed a plane load of investors by flying them over a 150-foot copper vein that was exposed to the air. It shone like a newly minted penny as they passed over, stunning even the most skeptical investors. (He had previously parachuted a crew in to polish the ore in the bush.)

Inco

The International Nickel Company was founded in 1902 and for most of the 20th century it remained the dominant player in nickel exploration, production, and marketing.

The company virtually invented the nickel market:

  • In 1890, global output of nickel was 3,000 tonnes
  • Nickel was mainly used for military purposes but sales dried up at the end of WWI
  • The company discovered nickel alloys that were marketed for use in automobiles, pipes, industry, coins, and even kitchen sinks
  • By 1951, the world consumed 130,000 tonnes of nickel a year with 90% of it supplied by Inco

By 1995, Inco was still the market leader in nickel, producing 26% of the world’s nickel with $2.3 billion in sales each year.

Falconbridge

In 1901, American inventor Thomas Edison found a nickel-copper ore body in the area northeast of Sudbury, Ontario.

However, it wasn’t until 1928 that Thayer Lindsley, the founder of Falconbridge, bought these claims and began to turn it into its first mine.

At the time, Inco had the only technology in North America to refine nickel, so Falconbridge sent its production to Norway where it purchased an operating refinery.

The company was smaller than Inco, but seen as more aggressive and nimble. The company produced 11% of the world’s nickel in 1995.

The Bidding Begins

While Inco, Falconbridge and up to a dozen other global miners spent resources on calculating the value of Voisey’s Bay, Teck was the first to approach with a different strategy.

In less than a day, and despite seeing any core, Teck was able to do a simple deal less than four pages long: $108 million for 10% of the company, or the equivalent of $36 per share. Teck also surrendered their voting rights to Friedland to prevent future hostile takeovers.

That got the market talking. Days later, the stock would trade at over $40 per share with a market capitalization of more than $1 billion.

In May 1995, after much posturing between Inco and Diamond Fields executives, another deal was struck. This time, Inco bought a 25% stake of Voisey’s Bay for US$386.7 million in preferred shares and cash, as well as 8% of Diamond Fields from company co-founder Jean-Raymond Boulle and early investor Robertson Stephens.

By the time the deal closed in June 1995, Diamond Fields’ stock price doubled again to $80.00.

After months of drilling misses outside of the Ovoid, finally in August there were signs of light: 1m of massive sulphides were hit on Hole #166.

In November, drill hole #202 retrieved 40m of massive sulfides, the largest section of sulfides found outside the Ovoid. It was now clear that there was a series of deposits at Voisey’s Bay. The hole assayed 3.36% nickel and became a part of what is known as the Eastern Deeps.

The Showdown

In December, Inco and Falconbridge both began to aggressively pursue Diamond Fields.

First, Inco presented a deal in principle for $3.5 billion, or $31 per share. Then, Falconbridge intercepted with an official offer for $4.0 billion, or $36 per share. This was a risky move for the smaller company, but it limited its downside by adding in $100 million in fees to the agreement in the case the deal were to not be finalized.

Next, the two competitors (Inco and Falconbridge) teamed together through a mutual connection to present an offer in tandem.

It was instantly shot down by Friedland.

Finally on March 26th 1996, Inco announced a takeover bid of its own for $4.5 billion of Diamond Fields – the equivalent of $43.50 per share or $174 pre-split. Inco’s stock price dropped but it held on, making the total value of the deal closer to $4.3 billion. On April 3, the deal was officially signed by all parties.

Part 3: Voisey’s Bay Today

Continue Reading
Comments

Base Metals

Prove Your Metal: Top 10 Strongest Metals on Earth

There are 91 elements that are defined as metals but not all are the same. Here is a breakdown of the top 10 strongest metals and their applications.

Published

on

Prove Your Metal: Top 10 Strongest Metals on Earth

The use of metals and the advancement of human civilization have gone hand in hand — and throughout the ages, each metal has proved its worth based on its properties and applications.

Today’s visualization from Viking Steel Structures outlines the 10 strongest metals on Earth and their applications.

What are Metals?

Metals are solid materials that are typically hard, shiny, malleable, and ductile, with good electrical and thermal conductivity. But not all metal is equal, which makes their uses as varied as their individual properties and benefits.

The periodic table below presents a simple view of the relationship between metals, nonmetals, and metalloids, which you can easily identify by color.

The Periodic Table

While 91 of the 118 elements of the periodic table are considered to be metals, only a few of them stand out as the strongest.

What Makes a Metal Strong?

The strength of a metal depends on four properties:

  1. Tensile Strength: How well a metal resists being pulled apart
  2. Compressive Strength: How well a material resists being squashed together
  3. Yield Strength: How well a rod or beam of a particular metal resists bending and permanent damage
  4. Impact Strength: The ability to resist shattering upon impact with another object or surface

Here are the top 10 metals based on these properties.

The Top 10 Strongest Metals

RankType of MetalExample UseAtomic WeightMelting Point
#1TungstenMaking bullets and missiles183.84 u3422°C / 6192 °F
#2 SteelConstruction of railroads, roads, other infrastructure and appliancesn/a1371°C / 2500°F
#3ChromiumManufacturing stainless steel51.96 u1907°C / 3465°F,
#4TitaniumIn the aerospace Industry, as a lightweight material with strength47.87 u1668°C / 3032°F
#5IronUsed to make bridges, electricity, pylons, bicycle chains, cutting tools and rifle barrels55.85 u1536°C / 2800°F
#6Vanadium80% of vanadium is alloyed with iron to make steel shock and corrosion resistance50.942 u1910°C / 3470°F
#7LutetiumUsed as catalysts in petroleum production.174.96 u1663 °C / 3025°F
#8ZirconiumUsed in nuclear power stations.91.22 u1850°C / 3.362°F
#9OsmiumAdded to platinum or indium to make them harder.190.2 u3000°C / 5,400°F
#10TantalumUsed as an alloy due to its high melting point and anti-corrosion.180.94 u3,017°C / 5462°F

Out of the Forge and into Tech: Metals for the Future

While these metals help to forge the modern world, there is a new class of metals that are set to create a new future.

Rare Earth elements (REEs) are a group of metals do not rely on their strength, but instead their importance in applications in new technologies, including those used for green energy.

MetalUses
NeodymiumMagnets containing neodymium are used in green technologies such as the manufacture of wind turbines and hybrid cars.
LanthanumUsed in catalytic converters in cars, enabling them to run at high temperatures
CeriumThis element is used in camera and telescope lenses.
PraseodymiumUsed to create strong metals for use in aircraft engines.
GadoliniumUsed in X-ray and MRI scanning systems, and also in television screens.
Yttrium, terbium, europiumMaking televisions and computer screens and other devices that have visual displays.

If the world is going to move towards a more sustainable and efficient future, metals—both tough and smart—are going to be critical. Each one will serve a particular purpose to build the infrastructure and technology for the next generation.

Our ability to deploy technology with the right materials will test the world’s mettle to meet the challenges of tomorrow—so choose wisely.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Base Metals

20 Common Metal Alloys and What They’re Made Of

You can’t find stainless steel, brass, sterling silver, or white gold on the periodic table. Learn about 20 common metal alloys, and what they are made from.

Published

on

Every day, you’re likely to encounter metals that cannot be found anywhere on the periodic table.

You may play a brass instrument while wearing a white gold necklace – or maybe you cook with a cast iron skillet and store your leftovers in a stainless steel refrigerator.

It’s likely that you know these common metal alloys by name, and you can probably even imagine what they look and feel like. But do you know what base metals these alloys are made of, exactly?

Common Metal Alloys

Today’s infographic comes to us from Alan’s Factory Outlet, and it breaks down metal and non-metal components that go into popular metal alloys.

In total, 20 alloys are highlighted, and they range from household names (i.e. bronze, sterling silver) to lesser-known metals that are crucial for industrial purposes (i.e. solder, gunmetal, magnox).

20 Common Metal Alloys and What They

Humans make metal alloys for various reasons.

Some alloys have long-standing historical significance. For example, electrum is a naturally-occurring alloy of gold and silver (with trace amounts of copper) that was used to make the very first metal coins in ancient history.

However, most of the common metal alloys on the above list are actually human inventions that are used to achieve practical purposes. Some were innovated by brilliant metallurgists, while others were discovered by fluke, but they’ve all had an ongoing impact on our species over time.

Alloys with an Impact

The Bronze Age (3,000 BC – 1,200 BC) is an important historical period that is rightfully named after one game-changing development: the ability to use bronze. This alloy, made from copper and tin, was extremely useful to our ancestors because it is much stronger and harder than its component metals.

Steel is another great example of an alloy that has changed the world. It is one of the most important and widely-used metals today. Without steel, modern civilization (skyscrapers, bridges, etc.) simply wouldn’t be possible.

While nobody knows exactly who invented steel, the alloy has a widely-known cousin that was likely invented in somewhat accidental circumstances.

In 1912, English metallurgist Harry Brearley had been tasked with finding a more erosion-resistant steel for a small arms manufacturer, trying many variations of alloys with none seeming to be suitable. However, in his scrap metal heap – where almost all of the metals he tried were rusting – there was one gun barrel that remained astonishingly untouched.

The metal alloy – now known to the world as stainless steel – was a step forward in creating a corrosion-resistant steel that is now used in many applications ranging from medical uses to heavy industry.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Novagold Company Spotlight

Subscribe

Join the 130,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular