Mapping the World's Plastic Waste Flows: Top Importers and Exporters
Connect with us

Green

Mapping the Flow of the World’s Plastic Waste

Published

on

Plastic Waste Imports and Exports

Mapping the Flow of the World’s Plastic Waste

The first plastic material, Bakelite, was invented in 1907. It made its way into everything you can imagine: telephones, chess pieces, Chanel jewelry, and electric guitars.

But it was in 1950 that our thirst for plastic truly began. In just 65 years, plastic production soared almost 200 times, resulting in about 6,300 million metric tons of waste today.

How does the world deal with this much debris? The truth is, a lot of plastic waste—both trash and recycled materials—is often shipped overseas to become someone else’s problem.

The Top Exporters and Importers of Plastic Waste

In honor of International Plastic Bag-Free day, today’s graphic uses data from The Guardian to uncover where the world’s plastic waste comes from, and who receives the bulk of these flows.

Top Exporters, Jan-Nov 2018 Top Importers, Jan-Nov 2018 
🇺🇸 United States961,563 tons🇲🇾 Malaysia913,165 tons
🇯🇵 Japan891,719 tons🇹🇭 Thailand471,724 tons
🇩🇪 Germany733,756 tons🇻🇳 Vietnam443,615 tons
🇬🇧 United Kingdom548,256 tons🇭🇰 Hong Kong398,261 tons

The U.S. could fill up 68,000 shipping containers with its annual plastic waste exports. Put another way, 6,000 blue whales would weigh less than this nearly one million tons of waste exports.

Given the amount of plastic which ends up in our oceans, this comparison is just cause for alarm. But one interesting thing to note is that overall totals have halved since 2016:

  • Top 21 total exports (Jan-Nov 2016): 11,342,439 tons
  • Top 21 total exports (Jan-Nov 2018): 5,828,257 tons
  • Percentage change (2016 to 2018): -49%

The world didn’t suddenly stop producing plastic waste overnight. So what caused the decline?

China Cuts Ties with International Plastic Imports

Over recent years, the trajectory of plastic exports has mimicked the movement of plastic waste into China, including the steep plummet that starts in 2018. After being the world’s dumping ground for decades, China enacted a new policy, dubbed “National Sword”, to ban foreign recyclables. The ban, which includes plastics, has left the world scrambling to find other outlets for its waste.

In response, top exporters quickly turned to other countries in Southeast Asia, such as Malaysia, Vietnam, and Thailand.

That didn’t completely stop plastic waste from seeping through, though. China previously imported 600,000 tons of plastic monthly, but since the policy only restricted 24 types of solid waste, 30,000 tons per month still entered the country post-ban, primarily from these countries:

  • 🇮🇩 Indonesia: 7,000 tons per month
  • 🇲🇾 Malaysia: 6,000 tons per month
  • 🇺🇸 United States: 5,500 tons per month
  • 🇯🇵 Japan: 4,000 tons per month

Many countries bearing the load of the world’s garbage are planning to follow in China’s footsteps and issue embargoes of their own. What does that mean for the future?

Recycle and Reuse; But Above All, Reduce

The immense amounts of plastic waste sent overseas include recycled and recyclable materials. That’s because most countries don’t have the means to manage their recycling properly, contrary to public belief. What is being done to mitigate waste in the future?

  1. Improve domestic recycling
    Waste Management is the largest recycling company in the United States. In 2018, it put $110 million towards building more plastic recycling infrastructure.
    Meanwhile, tech giant Amazon invested $10 million in a fund that creates recycling infrastructure and services in different cities.
  2. Reduce single-use plastics
    Recycling on its own may not be enough, which is why countries are thinking bigger to cut down on “throwaway” culture.
    The European Union passed a directive to ban disposable plastics and polystyrene “clamshell” containers, among other items, by 2021. More recently, California passed an ambitious bill to phase out single-use plastics by 2030.
Subscribe to Visual Capitalist
Click for Comments

Environment

The Biggest Carbon Emitters, By Sector

The manufacturing and construction sector contributed to 6.3 billion tonnes of global greenhouse gas emissions in 2019.

Published

on

The following content is sponsored by Northstar Clean Technologies

The Biggest Carbon Emitters, By Sector

It’s no secret that greenhouse gas emissions need to decrease drastically in order to fight the effects of climate change.

As countries across the globe ramp up efforts to reduce global warming, every industry needs to do its part. So who’s lagging and who’s leading?

Although often less discussed, the manufacturing and construction sector is a large contributor to global greenhouse gas emissions.

The above graphic from Northstar Clean Technologies takes a look at the biggest contributors by sector in relation to greenhouse gas emissions.

Breakdown Of Emissions

The manufacturing and construction sector is a growing one, and as population and infrastructure expand, it’s vital that we take all actionable paths to reduce emissions.

Manufacturing and construction contributed to 6.3 billion tonnes of global greenhouse gas emissions in 2019. Let’s look at the breakdown of greenhouse gas emissions by sector over the years from Our World In Data.

In 2019 electricity and heat were the biggest carbon emitters, while transport came in second place.

Manufacturing and construction overtook the agriculture sector in 2007 to become the third largest contributor to global greenhouse gas emissions.

Building a Solution

One solution to reducing the impact of the manufacturing and construction sector is to repurpose materials. This reduces emissions and waste while also being both energy and cost-efficient.

Take a material like asphalt shingles as an example. This product is found on the roofs of approximately 75% of single-family detached homes in the U.S. and Canada.

In 2018, 86% of total asphalt shingles waste was dumped in landfills where they do not decompose or biodegrade. Reusing and recycling existing materials like asphalt shingles is a vital step in reducing greenhouse gas emissions in the industry.

Northstar Clean Technologies repurposes the three primary components of asphalt shingles which are then recycled back into the market.

By reprocessing asphalt shingles into three primary components, Northstar’s clean technology has been shown to reduce CO₂ emissions by 60% compared to virgin production of liquid asphalt.

Click to learn how Northstar Clean Technologies is becoming one of the top material recovery providers in North America.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Green

Mapped: Carbon Dioxide Emissions Around the World

This graphic maps out carbon emissions around the world and where they come from, using data from the European Commission.

Published

on

mapping carbon dioxide emissions worldwide

Mapped: Carbon Dioxide Emissions Around the World

According to Our World in Data, the global population emits about 34 billion tonnes of carbon dioxide (CO₂) each year.

Where does all this CO₂ come from? This graphic by Adam Symington maps out carbon emissions around the world, using 2018 data from the European Commission that tracks tonnes of CO₂ per 0.1 degree grid (roughly 11 square kilometers).

This type of visualization allows us to clearly see not just population centers, but flight paths, shipping lanes, and high production areas. Let’s take a closer look at some of these concentrated (and brightly lit) regions on the map.

China, India, and the Indian Ocean

As the two most populated countries and economic forces, China and India are both significant emitters of CO₂. China in particular accounts for about 27% of global CO₂ emissions.

And looking at the oceans, we see how much shipping adds to emissions, with many shipping lanes east of China clearly outlined as well as the major Indian Ocean lane between the Strait of Malacca and the Suez Canal.

The United States and Central America

The United States is one of the world’s biggest carbon emitters. While other countries like Qatar and Saudi Arabia technically have higher emissions per capita, their overall emissions are relatively low due to smaller populations.

Across the U.S., the most brightly lit areas are major population centers like the Boston-Washington corridor, the Bay Area, and the Great Lakes. But also lit up are many of the interconnecting highways linking all these population centers, even in the less-populated middle of the country.

With so much traffic in and out of the U.S., the oceans become a murky mix of shipping and flight paths. To the south, very clearly visible is the major concentration of people around Mexico City and the traffic flowing through the Panama Canal.

South America’s Network of Emissions

Like the other regions, some of South America’s most populated areas are also the biggest emitters, such as São Paulo and Rio in Brazil and Buenos Aires in Argentina. This map also highlights the continent’s rough terrain, with most of the population and highway emissions limited to the coasts.

However, the cities aren’t the only big emitters in the region. There are clear lines intersecting the Amazon forest in many sections where cities and roads were constructed, including the economic hub city of Manaus along the Amazon River. Likewise, the oceans have many major shipping lanes highlighted, particularly East of Brazil.

Europe and North Africa

Germany is one of Europe’s biggest carbon emitters—in 2021, the country generated almost 644 million tonnes of CO₂.

Also making an impression are Italy (which is the second-highest CO₂ emitter after Germany) and the UK, as well the significant amount of trade along the English Channel.

Compared to the intricate network of cities, towns, and bustling highways spanning Europe, across the Mediterranean are far clearer and simpler lines of activity in Northern Africa. Two major exceptions are in the Middle-East, where Egypt’s Nile River and Suez Canal are massively lit up, as well as Israel on the east of the sea.

But a more significant (albeit murkier) picture is drawn by the massive amounts of shipping and flight paths illuminating the Atlantic and Mediterranean at large.

Net Zero by 2050

To mitigate the negative effects of climate change, countries around the world have made commitments to reach net-zero emissions.

Imagining the global map of emissions with these commitments in action requires a complete transformation of energy production, consumption habits, transportation infrastructure, and more. And even then, a future generated map wouldn’t be fully dark, as “net-zero” is not equivalent to zero emissions but a balance of emissions and removal.

How might this map of global emissions look in the near and distant future? And what other interesting insights can you generate by browsing the world this way?

Continue Reading

Subscribe

Popular