Connect with us

Batteries

Battery Megafactory Forecast: 400% Increase in Capacity to 1 TWh by 2028

Published

on

Battery Megafactory Forecast: 400% Increase in Capacity to 1 TWh by 2028

Battery Megafactory Forecast

The Chart of the Week is a weekly Visual Capitalist feature on Fridays.

When ground broke on the massive Tesla Gigafactory in Nevada in 2014, the world marveled at the project’s audacity, size, and scope.

At the time, it was touted that the cutting-edge facility would be the largest building in the world by footprint, and that the Gigafactory would single-handedly be capable of doubling the world’s lithium-ion battery production capacity.

What many did not realize, however, is that although as ambitious and as forward-looking as the project sounded, the Gigafactory was just the start of a trend towards scale in the battery making space. While Tesla’s facility was the most publicized, it would ultimately be one of many massive factories in the global pipeline.

Mastering Scale

Today’s data comes to us from Benchmark Mineral Intelligence, and it forecasts that we will see a 399% increase in lithium-ion battery production capacity over the next decade – enough to pass the impressive 1 TWh milestone.

Here is a more detailed projection of how things will shape up in the coming decade:

RegionCapacity (GWh, 2018)Capacity (GWh, 2023)Capacity (GWh, 2028)
Grand Total220.56581,102.5
China134.5405631
Europe19.693.5207
North America20.981148
Other005
Asia (excl China)45.578.5111.5

In just a decade, lithium-ion battery megafactories around the world will have a combined production capacity equivalent to 22 Tesla Gigafactories!

The majority of this capacity will be located in China, which is projected to have 57% of the global total.

The Top Plants Globally

According to Benchmark, the top 10 megafactories will be combining for 299 GWh of capacity in 2023, which will be equal to almost half of the global production total.

Here are the top 10 plants, sorted by projected capacity:

RankMegafactoryOwnerCountryForecasted capacity by 2023 (GWh)
#1CATLContemporary Amperex Technology Co LtdChina50
#2Tesla Gigafactory 1Tesla Inc / Panasonic Corp (25%)US50
#3Nanjing LG Chem New Energy Battery Co., Ltd.LG ChemChina35
#4Nanjing LG Chem New Energy Battery Co., Ltd. Plant 2LG ChemChina28
#5Samsung SDI XianSamsung SDIChina25
#6Funeng TechnologyFuneng Technology (Ganzhou)China25
#7BYD , QinghaiBYD Co LtdChina24
#8LG Chem Wroclaw Energy Sp. z o.o.LG ChemPoland22
#9Samsung SDI KoreaSamsung SDIKorea20
#10LishenTianJin Lishen Battery Joint-Stock CO.,LTDChina20

Of the top 10 megafactory plants in 2023, the majority will be located in China – meanwhile, the U.S. (Tesla Gigafactory), South Korea (Samsung), and Poland (LG Chem) will be home to the rest.

Reaching economies of scale in lithium-ion battery production will be a significant step in decreasing the overall cost of electric vehicles, which are expected to surpass traditional vehicles in market share by 2038.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Comments

Batteries

Animation: The Entire History of Tesla in 5 Minutes

Everything you need to know about the history of Tesla, including Elon Musk’s vision for the future of the iconic electric car company.

Published

on

How did Tesla accelerate from 0-60 mph in such a short period of time?

Today’s five-minute-long animation is presented in association with Global Energy Metals, and it tells you everything you need to know about the history of Tesla, including Elon Musk’s vision for the future of the iconic electric car company.

Watch the video:

The video primarily keys in on Tesla’s successes and the setbacks the company has faced along the way – it also shows that Tesla was able to pass Ford in market value just seven years after the company’s IPO.

The Rise of Tesla Series

The above video is the culmination of our Rise of Tesla Series, which also includes three full-length infographics that tell a more in-depth story about the history of Tesla, and what the company aspires to:

1. Tesla’s Origin Story (View infographic)

  • What was the vision behind the founding of Tesla?
  • Early hurdles faced by the company, including its near escape from the brink of bankruptcy
  • Elon Musk’s takeover of the company, and the dramatic actions taken to keep it alive
  • A timeline showing the development of the Roadster, and why this first car matters

2. Tesla’s Journey: How it Passed Ford in Value (View Infographic)

  • The company’s plan to parlay the Roadster’s success into a viable long-term company strategy
  • Introducing the Tesla Model S and Model X
  • How the company would use the Gigafactory concept to bring economies of scale to battery production
  • Other milestones: Powerwall, Autopilot, and Tesla’s growing Supercharger network
  • The announcement of the Model 3

3. Elon Musk’s Vision for the Future of Tesla (View Infographic)

  • Detailing Tesla’s ambitions for the future, including how it plans to productize the factory
  • Other vehicles Tesla plans to release, including the Tesla Semi and a future ultra low cost model
  • How Tesla plans to combine fully autonomous cars with the future sharing economy
  • Exploding demand for lithium-ion batteries, and why Tesla is planning on building additional Gigafactories

Part 1: TeslaPart 2: From IPO and OnwardsVisualizing Elon Musk

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Automotive

How Much Copper is in an Electric Vehicle?

Have you ever wondered how much copper is in an electric vehicle? This infographic shows the metal’s properties as well as the quantity of copper used.

Published

on

How Much Copper is in an Electric Vehicle?

Copper’s special relationship with electricity has been apparent since ship designers first regularly began installing copper to protect the masts of wooden ships from lightning in the early 19th century.

Today, of course, you might be more used to seeing copper’s electrical applications through the use of power lines, telephone wires, and wiring in practically every major home appliance you own.

Millions of tons get used for these applications every year, but it is still early days for copper’s use in electrification. That’s because copper will continue to be a critical component of the green energy revolution, thanks to the rising adoption of battery-powered vehicles.

Why Copper?

Today’s visualization comes to us from Canadian Platinum Corp., and it focuses on showing how much copper is in an electric vehicle, along with the properties that make it the ideal choice for an EV-powered future.

Here is why copper is a crucial component to vehicle manufacturers:

Cost
Copper costs roughly $0.20 per ounce, compared to silver ($15/oz) and gold ($1200/oz), making it by far the cheapest option for electrical wire.

Conductivity:
Copper is nearly as conductive as silver – the most conductive metal – but comes at a fraction of the cost.

Ductility:
Copper can easily be shaped into wire, which is important for most electrical applications.

It’s also important to note that temperature does not affect copper’s conductivity, which makes the metal ideal for automobiles in all climates.

Copper in Gas vs. Electric Vehicles

The UBS Evidence Lab tore apart a traditional gas-powered vehicle as well as an EV to compare the different quantities of raw materials used.

What they found was crucial: there is 80% more copper in a Chevrolet Bolt, in comparison to a similar-sized Volkswagen Golf.

The major reason for this is that at the heart of every EV is an electric motor, which is built with copper, steel, and permanent magnets (rare earths). Electric motors tend to be much simpler than gas-powered engines, which have hundreds of moving parts.

Incredibly, in an electric motor, there can be more than a mile of copper wiring inside the stator.

The More Electric, the More Copper

According to Copper.org, along the scale from gas-powered cars to fully electrical vehicles, copper use increases dramatically.

Conventional gas-powered cars contain 18 to 49 lbs. of copper while a battery-powered EV contains 183 lbs. Meanwhile, for a fully electrical bus, a whopping 814 lbs. of copper is needed.

With the rapidly increasing adoption of electric vehicles, copper will be an essential material for the coming electrification of all forms of ground transport.

Copper is at the heart of the electric vehicle and the world will need more. By 2027, copper demand stemming from EVs is expected to increase by 1.7 million tonnes, which is a number just shy of China’s entire copper production in 2017.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Foran Mining Company Spotlight

Subscribe

Join the 100,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular