Connect with us

Energy

Tesla’s Journey: From IPO to Passing Ford in Value, in Just 7 Years

Published

on

In Tesla’s final years as a private company, things got pretty hectic.

As we showed in Part 1: Tesla’s Origin Story, the launch of the Roadster was a public relations success, but it created all kinds of problems internally. There were massive cost overruns, a revolving door of CEOs, layoffs, and even a narrow escape from bankruptcy.

Fortunately, by 2010 the company was able to forget these troubles after a successful IPO. The company secured $226 million in capital, and hitting the public markets started a roller coaster ride of growth.

Rise of Tesla: The Company (Part 2 of 3)

Today’s giant infographic comes to us from Global Energy Metals, and it is the second part of our three-part Rise of Tesla Series, which is a definitive source for everything you ever wanted to know about the company.

Part 2 shows major events from 2010 until today, and it tracks the company’s rapid growth along the way.

Part 1: Tesla's Origin StoryPart 2: From IPO and OnwardsVisualizing Elon Musk's Vision for the Future of Tesla

Tesla's Journey: From IPO to Passing Ford in Value, in Just 7 Years
Part 1: Tesla's Origin StoryPart 2: From IPO and OnwardsVisualizing Elon Musk's Vision for the Future of Tesla

Tesla was the first American car company to IPO since The Ford Motor Company went public in 1956.

Interestingly, it only took seven years for Tesla to match Ford’s value – here are the major events during this stretch of time that made this incredible feat possible.

2010

After securing funding from the public markets, Tesla was positioned for its next big leap:

  • The company had just narrowly escaped bankruptcy
  • The Tesla Roadster helped to dispel the stigma around EVs, but it was unclear if it could be parlayed into mainstream success
  • The company was free from its feud and lawsuit with co-founder Martin Eberhard
  • Tesla had just taken over its now famous factory in Fremont, CA

It was time to focus on the next phase of Tesla’s strategy: to build the company’s first real car from scratch – and to help the company achieve the economies of scale, impact, and reputation it desired.

2011

In 2011, Tesla announces that the Roadster will be officially discontinued.

Instead, the company starts focusing all efforts on two new EVs: the Model S (A full-size luxury car) and the Model X (A full-size luxury crossover SUV).

2012

The Model S was Tesla’s chance to build a car around the electric powertrain, rather than the other way around.

When we started Model S, it was a clean sheet of paper.

– Franz Von Holzhausen, Chief Car Designer

In June 2012, the first Model S hits the road – and the rest is history. The model won multiple awards, including being recognized as the “safest car ever tested” by the NHTSA and the “Best car ever tested” by Consumer Reports. Over 200,000 cars were eventually sold.

But despite the success of the new model, Tesla still faced a giant problem. Lithium-ion batteries were still too expensive for a mass market car to be feasible, and the company needed to “bet the farm” on an idea to bring EVs to the mainstream.

2013

Tesla reveals initial plans for its Gigafactory concept, an ambitious attempt to bring economies of scale to the battery industry.

In time, the details of those plans solidified:

  • Cost: $5 billion
  • Partner: Panasonic
  • Objective: To reduce the cost of lithium-ion battery packs by 30%
  • Location: Sparks, Nevada
  • Size: Up to 5.8 million sq. ft (100 football fields)

The company believed that through economies of scale, reduction of waste, a closer supply chain, vertical integration, and process optimization, that the cost of batteries could be sufficiently reduced to make a mass market EV possible.

Under Tesla’s first plan, the Gigafactory would be ramped up to produce batteries for 500,000 EVs per year by 2020. Later on, the company eventually moved that target forward by two years.

2014

Tesla makes significant advances in software, hardware, and its mission.

  • Autopilot is released for the first time, which gives the Model S semi-autonomous driving and parking capabilities
  • By this time, Tesla’s Supercharger network is up to 221 stations around the world
  • Tesla goes open source, releasing all of the company’s patents for anyone to use

2015

After massive and repeated delays because of issues with the “falcon wing” doors, the Model X finally is released.

In the same year, the Tesla Powerwall is also announced. Using a high-capacity lithium-ion battery and proprietary technology – the Powerwall is a major step towards Tesla achieving its major end goal of integrating energy generation and storage in the home.

2016

Tesla unveils its Model 3 – the car for the masses that is supposed to change it all.

Here are the specs for the most basic model, which is available at $35,000:

  • Price: $35,000
  • Torque: 415 lb-ft
  • Power: 235 hp (Motor Trend’s est.)
  • 0-60 mph: 5.6 seconds
  • Top speed: 130 mph
  • Range: 220 miles

After being announced, the Model 3 quickly garnered 500,000 pre-orders. To put the magnitude of this number in perspective – in six years of production of the Model S, the company has only delivered about 200,000 cars in total so far.

In 2016, Tesla also announces that it is taking over of Elon Musk’s other companies, SolarCity, for $2.6 billion of stock. Elon Musk owns 22% of SolarCity shares at the time of the takeover.

The goal: to build a seamlessly integrated battery and solar product that looks beautiful.

2017

2017 was a whirlwind year for Tesla:

  • Consumer Reports names Tesla the top American car brand in 2017
  • The Tesla Gigafactory I begins battery cell production
  • Tesla wins bids to provide grid-scale battery power in South Australia and Puerto Rico
  • Tesla starts accepting orders for its new solar roof product
  • The Tesla Semi is unveiled – a semi-truck that can go 0-60 mph in just 5 seconds, which is 3x faster than a diesel truck
  • Model 3 deliveries begin, though production issues keep them from ramping at the speed anticipated

Tesla also unveils the new Roadster – the second-gen version of the car that started it all.

This time, it has unbelievable specs:

  • 0-60 mph: 1.9 seconds
  • 200 kWh battery pack
  • Top speed: above 250 mph
  • 620 mile range (It could drive from San Francisco to LA and back, without needing a recharge)

The point of doing this is to give a hardcore smackdown to gasoline cars

– Elon Musk, Tesla Co-Founder and CEO

The new Roadster will go into production in 2020.

A Look to the Future

In 1956, the IPO of the Ford Motor Company was the single largest IPO in Wall Street’s history.

Tesla IPO’d a whopping 54 years later, and the company has already passed Ford in value:

Ford: $49.9B
Tesla: $52.3B
(numbers from Dec 31, 2017)

An incredible feat, it took only seven years for Tesla to pass Ford in value on the public markets. However, this is still the beginning of Tesla’s story.

See Musk’s vision for the future in Part 3 of this series.

Click for Comments

Energy

How Much Does the U.S. Depend on Russian Uranium?

Currently, Russia is the largest foreign supplier of nuclear power fuel to the U.S.

Published

on

Voronoi graphic visualizing U.S. reliance on Russian uranium

How Much Does the U.S. Depend on Russian Uranium?

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email.

The U.S. House of Representatives recently passed a ban on imports of Russian uranium. The bill must pass the Senate before becoming law.

In this graphic, we visualize how much the U.S. relies on Russian uranium, based on data from the United States Energy Information Administration (EIA).

U.S. Suppliers of Enriched Uranium

After Russia invaded Ukraine, the U.S. imposed sanctions on Russian-produced oil and gas—yet Russian-enriched uranium is still being imported.

Currently, Russia is the largest foreign supplier of nuclear power fuel to the United States. In 2022, Russia supplied almost a quarter of the enriched uranium used to fuel America’s fleet of more than 90 commercial reactors.

Country of enrichment serviceSWU%
🇺🇸 United States3,87627.34%
🇷🇺 Russia3,40924.04%
🇩🇪 Germany1,76312.40%
🇬🇧 United Kingdom1,59311.23%
🇳🇱 Netherlands1,3039.20%
Other2,23215.79%
Total14,176100%

SWU stands for “Separative Work Unit” in the uranium industry. It is a measure of the amount of work required to separate isotopes of uranium during the enrichment process. Source: U.S. Energy Information Administration

Most of the remaining uranium is imported from European countries, while another portion is produced by a British-Dutch-German consortium operating in the United States called Urenco.

Similarly, nearly a dozen countries around the world depend on Russia for more than half of their enriched uranium—and many of them are NATO-allied members and allies of Ukraine.

In 2023 alone, the U.S. nuclear industry paid over $800 million to Russia’s state-owned nuclear energy corporation, Rosatom, and its fuel subsidiaries.

It is important to note that 19% of electricity in the U.S. is powered by nuclear plants.

The dependency on Russian fuels dates back to the 1990s when the United States turned away from its own enrichment capabilities in favor of using down-blended stocks of Soviet-era weapons-grade uranium.

As part of the new uranium-ban bill, the Biden administration plans to allocate $2.2 billion for the expansion of uranium enrichment facilities in the United States.

Continue Reading

Subscribe

Popular