Connect with us

Green

Visualizing the Flow of Energy-Related CO2 Emissions in the U.S.

Published

on

Subscribe to the Decarbonization Channel’s free mailing list for more like this

Visualizing the Flow of Energy-Related CO2 Emissions in the U.S.

Visualizing the Flow of Energy-Related CO2 Emissions in the U.S.

This was originally posted on the Decarbonization Channel. Subscribe to the free mailing list to be the first to see graphics related to decarbonization with a focus on the U.S. energy sector.

In 2021, U.S. carbon dioxide emissions from the generation and consumption of energy reached 4.9 billion tonnes.

To better understand how various energy sources and their end-uses contribute to carbon emissions, this graphic visualizes the flow of energy-related CO2 emissions in the U.S. using carbon flow charts by the Lawrence Livermore National Laboratory.

What are Energy-Related CO2 Emissions?

Energy-related CO2 emissions refer to the release of carbon dioxide as a result of the combustion of fuels to produce energy. They arise through the direct use of fossil fuels for transport, heating, or industrial needs, as well as the use of fossil fuels for electricity generation.

To provide some context, non-energy-related CO2 emissions are those that result from industrial chemical reactions, deforestation, and agricultural activities.

As the largest contributor to carbon emissions, however, energy-related CO2 emissions account for approximately 85% of all emissions in the U.S. which we will now explore in more detail.

U.S. Energy-Related CO2 Emissions in 2021

Followed by a pandemic-driven decline in 2020, energy-related carbon dioxide emissions in the U.S. increased by 325 million tonnes in 2021, marking the largest-ever annual increase.

Energy SourceCO2 emissions in million tonnes, 2021% of total energy-related emissions
Petroleum2,22345.7%
Natural Gas1,63733.7%
Coal1,00320.6%
Solar, Wind, Nuclear, Hydro, and Biomass00%
Total4,863100%

When we follow the CO2 emissions from the above fossil fuels to their end uses, transportation and electricity generation stand out as the biggest contributors.

In 2021, these two sectors accounted for more than 68% of all energy-related emissions in the country, roughly emitting 3.3 billion tonnes of CO2.

End-Uses CO2 emissions in million tonnes, 2021% of total energy-related emissions
Transportation1,80137.0%
Electricity Generation1,53731.6%
Industrial Uses96519.8%
Residential Uses3216.6%
Commercial Uses2394.9%
Total4,863100%

When it comes to transportation, petroleum accounted for 97% of emissions, largely due to motor gasoline and diesel consumption. On the other hand, coal and natural gas made up 99% of CO2 emissions related to electricity generation.

Due to its high carbon intensity, coal’s contribution to power sector emissions may also be of particular interest. As the share of coal rose from 20% to 23% in the U.S. electricity mix in 2021, electricity emissions from coal also increased for the first time since 2014.

Naturally, this shift raised the overall energy-related CO2 emissions in 2021. It also caused a 4% hike in the carbon intensity of the country’s electricity.

Lowering Emissions

To avoid the impacts of climate change, many countries and companies are working towards decarbonization across all sectors, which can largely be facilitated by reductions in energy-related carbon emissions.

Accounting for nearly 70% of all energy-related CO2 emissions, transportation and utilities can be important pillars in these efforts.

Click for Comments

Environment

How Carbon Dioxide Removal is Critical to a Net-Zero Future

Here’s how carbon dioxide removal methods could help us meet net-zero targets and and stabilize the climate.

Published

on

Teaser image for a post on the importance of carbon dioxide removal in the push for a net-zero future.

Published

on

The following content is sponsored by Carbon Streaming

How Carbon Dioxide Removal is Critical to a Net-Zero Future

Meeting the Paris Agreement temperature goals and avoiding the worst consequences of a warming world requires first and foremost emission reductions, but also the ongoing direct removal of CO2 from the atmosphere.

We’ve partnered with Carbon Streaming to take a deep look at carbon dioxide removal methods, and the role that they could play in a net-zero future. 

What is Carbon Dioxide Removal?

Carbon Dioxide Removal, or CDR, is the direct removal of CO2 from the atmosphere and its durable storage in geological, terrestrial, or ocean reservoirs, or in products. 

And according to the UN Environment Programme, all least-cost pathways to net zero that are consistent with the Paris Agreement have some role for CDR. In a 1.5°C scenario, in addition to emissions reductions, CDR will need to pull an estimated 3.8 GtCO2e p.a. out of the atmosphere by 2035 and 9.2 GtCO2e p.a. by 2050.

The ‘net’ in net zero is an important quantifier here, because there will be some sectors that can’t decarbonize, especially in the near term. This includes things like shipping and concrete production, where there are limited commercially viable alternatives to fossil fuels.

Not All CDR is Created Equal

There are a whole host of proposed ways for removing CO2 from the atmosphere at scale, which can be divided into land-based and novel methods, and each with their own pros and cons. 

Land-based methods, like afforestation and reforestation and soil carbon sequestration, tend to be the cheapest options, but don’t tend to store the carbon for very long—just decades to centuries. 

In fact, afforestation and reforestation—basically planting lots of trees—is already being done around the world and in 2020, was responsible for removing around 2 GtCO2e. And while it is tempting to think that we can plant our way out of climate change, think that the U.S. would need to plant a forest the size of New Mexico every year to cancel out their emissions.

On the other hand, novel methods like enhanced weathering and direct air carbon capture and storage, because they store carbon in minerals and geological reservoirs, can keep carbon sequestered for tens of thousand years or longer. The trade off is that these methods can be very expensive—between $100-500 and north of $800 per metric ton

CDR Has a Critical Role to Play

In the end, there is no silver bullet, and given that 2023 was the hottest year on record—1.45°C above pre-industrial levels—it’s likely that many different CDR methods will end up playing a part, depending on local circumstances. 

And not just in the drive to net zero, but also in the years after 2050, as we begin to stabilize global average temperatures and gradually return them to pre-industrial norms. 

Carbon Streaming uses carbon credit streams to finance CDR projects, such as reforestation and biochar, to accelerate a net-zero future.

Visual Capitalist Logo

Learn more about Carbon Streaming’s CDR projects.

Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular