Visualizing America's Energy Use, in One Giant Chart
Connect with us

Energy

Visualizing America’s Energy Use, in One Giant Chart

Published

on

U.S. energy use in 2019

Visualizing America’s Energy Use, in One Giant Chart

Have you ever wondered where the country’s energy comes from, and how exactly it gets used?

Luckily, the Lawrence Livermore National Laboratory (LLNL) crunches the numbers every year, outputting an incredible flow diagram that covers the broad spectrum of U.S. energy use.

The 2019 version of this comprehensive diagram gives us an in-depth picture of the U.S. energy ecosystem, showing not only where energy originates by fuel source (i.e. wind, oil, natural gas, etc.) but also how it’s ultimately consumed by sector.

In Perspective: 2019 Energy Use

Below, we’ll use the unit of quads, with each quad worth 1 quadrillion BTUs, to compare data for the last five years of energy use in the United States. Each quad has roughly the same amount of energy as contained in 185 million barrels of crude oil.

YearEnergy ConsumptionChange (yoy)Fossil Fuels in Mix
2019100.2 quads-1.080.0%
2018101.2 quads+3.580.2%
201797.7 quads+0.480.0%
201697.3 quads+0.180.8%
201597.2 quads-1.181.6%

Interestingly, overall energy use in the U.S. actually decreased to 100.2 quads in 2019, similar to a decrease last seen in 2015.

It’s also worth noting that the percentage of fossil fuels used in the 2019 energy mix decreased by 0.2% from last year to make up 80.0% of the total. This effectively negates the small rise of fossil fuel usage that occurred in 2018.

Energy Use by Source

Which sources of energy are seeing more use, as a percentage of the total energy mix?

 20152016201720182019Change ('15-'19)
Oil36.3%36.9%37.1%36.5%36.6%+0.3%
Natural Gas29.0%29.3%28.7%30.6%32.0%+3.0%
Coal16.1%14.6%14.3%13.1%11.4%-4.7%
Nuclear8.6%8.7%8.6%8.3%8.4%-0.2%
Biomass4.8%4.9%5.0%5.1%5.0%+0.2%
Wind1.9%2.2%2.4%2.5%2.7%+0.8%
Hydro2.5%2.5%2.8%2.7%2.5%+0.0%
Solar0.5%0.6%0.8%0.9%1.0%+0.5%
Geothermal0.2%0.2%0.2%0.2%0.2%+0.0%

Since 2015, natural gas has grown from 29% to 32% of the U.S. energy mix — while coal’s role in the mix has dropped by 4.7%.

In these terms, it can be hard to see growth in renewables, but looking at the data in more absolute terms can tell a different story. For example, in 2015 solar added 0.532 quads of energy to the mix, while in 2019 it accounted for 1.04 quads — a 95% increase.

Energy Consumption

Finally, let’s take a look at where energy goes by end consumption, and whether or not this is evolving over time.

 20152016201720182019Change ('15-'19)
Residential15.6%15.2%14.7%15.7%15.7%+0.1%
Commercial12.1%12.5%12.3%12.4%12.4%+0.3%
Industrial33.9%33.8%34.5%34.6%34.8%+0.9%
Transportation38.4%38.5%38.5%37.3%37.1%-1.3%

Residential, commercial, and industrial sectors are all increasing their use of energy, while the transportation sector is seeing a drop in energy use — likely thanks to more fuel efficient cars, EVs, public transport, and other factors.

The COVID-19 Effect on Energy Use

The energy mix is incredibly difficult to change overnight, so over the years these flow diagrams created by the Lawrence Livermore National Laboratory (LLNL) have not changed much.

One exception to this will be in 2020, which has seen an unprecedented shutdown of the global economy. As a result, imagining the next iteration of this energy flow diagram is basically anybody’s guess.

We can likely all agree that it’ll include increased levels of energy consumption in households and shortfalls everywhere else, especially in the transportation sector. However, the total amount of energy used — and where it comes from — might be a significant deviation from past years.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing China’s Dominance in Battery Manufacturing (2022-2027P)

This infographic breaks down battery manufacturing capacity by country in 2022 and 2027.

Published

on

battery manufacturing capacity by country infographic

Visualizing China’s Dominance in Battery Manufacturing

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

With the world gearing up for the electric vehicle era, battery manufacturing has become a priority for many nations, including the United States.

However, having entered the race for batteries early, China is far and away in the lead.

Using the data and projections behind BloombergNEF’s lithium-ion supply chain rankings, this infographic visualizes battery manufacturing capacity by country in 2022 and 2027p, highlighting the extent of China’s battery dominance.

Battery Manufacturing Capacity by Country in 2022

In 2022, China had more battery production capacity than the rest of the world combined.

RankCountry2022 Battery Cell
Manufacturing Capacity, GWh
% of Total
#1 🇨🇳 China89377%
#2🇵🇱 Poland736%
#3🇺🇸 U.S.706%
#4🇭🇺 Hungary383%
#5🇩🇪 Germany313%
#6🇸🇪 Sweden161%
#7🇰🇷 South Korea151%
#8🇯🇵 Japan121%
#9🇫🇷 France61%
#10🇮🇳 India30.2%
🌍 Other71%
Total1,163100%

With nearly 900 gigawatt-hours of manufacturing capacity or 77% of the global total, China is home to six of the world’s 10 biggest battery makers. Behind China’s battery dominance is its vertical integration across the rest of the EV supply chain, from mining the metals to producing the EVs. It’s also the largest EV market, accounting for 52% of global sales in 2021.

Poland ranks second with less than one-tenth of China’s capacity. In addition, it hosts LG Energy Solution’s Wroclaw gigafactory, the largest of its kind in Europe and one of the largest in the world. Overall, European countries (including non-EU members) made up just 14% of global battery manufacturing capacity in 2022.

Although it lives in China’s shadow when it comes to batteries, the U.S. is also among the world’s lithium-ion powerhouses. As of 2022, it had eight major operational battery factories, concentrated in the Midwest and the South.

China’s Near-Monopoly Continues Through 2027

Global lithium-ion manufacturing capacity is projected to increase eightfold in the next five years. Here are the top 10 countries by projected battery production capacity in 2027:

RankCountry2027P Battery Cell
Manufacturing Capacity, GWh
% of Total
#1🇨🇳 China6,19769%
#2🇺🇸 U.S.90810%
#3🇩🇪 Germany5036%
#4🇭🇺 Hungary1942%
#5🇸🇪 Sweden1352%
#6🇵🇱 Poland1121%
#7🇨🇦 Canada1061%
#8🇪🇸 Spain981%
#9🇫🇷 France891%
#10 🇲🇽 Mexico801%
🌍 Other5236%
Total8,945100%

China’s well-established advantage is set to continue through 2027, with 69% of the world’s battery manufacturing capacity.

Meanwhile, the U.S. is projected to increase its capacity by more than 10-fold in the next five years. EV tax credits in the Inflation Reduction Act are likely to incentivize battery manufacturing by rewarding EVs made with domestic materials. Alongside Ford and General Motors, Asian companies including Toyota, SK Innovation, and LG Energy Solution have all announced investments in U.S. battery manufacturing in recent months.

Europe will host six of the projected top 10 countries for battery production in 2027. Europe’s current and future battery plants come from a mix of domestic and foreign firms, including Germany’s Volkswagen, China’s CATL, and South Korea’s SK Innovation.

Can Countries Cut Ties With China?

Regardless of the growth in North America and Europe, China’s dominance is unmatched.

Battery manufacturing is just one piece of the puzzle, albeit a major one. Most of the parts and metals that make up a battery—like battery-grade lithium, electrolytes, separators, cathodes, and anodes—are primarily made in China.

Therefore, combating China’s dominance will be expensive. According to Bloomberg, the U.S. and Europe will have to invest $87 billion and $102 billion, respectively, to meet domestic battery demand with fully local supply chains by 2030.

Continue Reading

Subscribe

Popular