All the Biomass on Earth in One Massive Visualization
Connect with us

Misc

All the Biomass of Earth, in One Graphic

Published

on

Visualizing All the Biomass on Earth

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

All the Biomass of Earth, in One Graphic

Our planet supports approximately 8.7 million species, of which over a quarter live in water.

But humans can have a hard time comprehending numbers this big, so it can be difficult to really appreciate the breadth of this incredible diversity of life on Earth.

In order to fully grasp this scale, we draw from research by Bar-On et al. to break down the total composition of the living world, in terms of its biomass, and where we fit into this picture.

Why Carbon?

A “carbon-based life form” might sound like something out of science fiction, but that’s what we and all other living things are.

Carbon is used in complex molecules and compounds—making it an essential part of our biology. That’s why biomass, or the mass of organisms, is typically measured in terms of carbon makeup.

In our visualization, one cube represents 1 million metric tons of carbon, and every thousand of these cubes is equal to 1 Gigaton (Gt C).

Here’s how the numbers stack up in terms of biomass of life on Earth:

TaxonMass (Gt C)% of total
Plants45082.4%
Bacteria7012.8%
Fungi122.2%
Archaea71.3%
Protists40.70%
Animals2.5890.47%
Viruses0.20.04%
Total545.8100.0%

Plants make up the overwhelming majority of biomass on Earth. There are 320,000 species of plants, and their vital photosynthetic processes keep entire ecosystems from falling apart.

Fungi is the third most abundant type of life—and although 148,000 species of fungi have been identified by scientists, it’s estimated there may be millions more.

Animals: A Drop in the Biomass Ocean

Although animals make up only 0.47% of all biomass, there are many sub-categories within them that are worth exploring further.

TaxonMass (Gt C)% of Animal Biomass
Arthropods (Marine)1.038.6%
Fish0.727.0%
Arthropods (Terrestrial)0.27.7%
Annelids0.27.7%
Mollusks0.27.7%
Livestock0.13.9%
Cnidarians0.13.9%
Humans0.062.3%
Nematodes0.020.8%
Wild mammals0.0070.3%
Wild birds0.0020.1%
Animals (Total)2.589100.0%

Arthropods

Arthropods are the largest group of invertebrates, and include up to 10 million species across insects, arachnids, and crustaceans.

Chordates

The category of chordates includes wild mammals, wild birds, livestock, humans, and fish. Across 65,000 living species in total, nearly half are bony fish like piranhas, salmon, or seahorses.

Surprisingly, humans contribute a relatively small mass compared to the rest of the Animal Kingdom. People make up only 0.01% of all the biomass on the planet.

Annelids, Mollusks, Cnidarians, and Nematodes

Annelids are segmented worms like earthworms or leeches, with over 22,000 living species on this planet. After arthropods, mollusks are the second-largest group of invertebrates with over 85,000 living species. Of these, 80% are snails and slugs.

Cnidarians are a taxon of aquatic invertebrates covering 11,000 species across various marine environments. These include jellyfish, sea anemone, and even corals.

Nematodes are commonly referred to as roundworms. These sturdy critters have successfully adapted to virtually every kind of ecosystem, from polar regions to oceanic trenches. They’ve even survived traveling into space and back.

The Microscopic Rest

Beyond these animals, plants, and fungi, there are an estimated trillion species of microbes invisible to the naked eye—and we’ve probably only discovered 0.001% of them so far.

Bacteria

Bacteria were one of the first life forms to appear on Earth, and classified as prokaryotes (nucleus-less). Today, they’re the second-largest composition of biomass behind plants. Perhaps this is because these organisms can be found living literally everywhere—from your gut to deep in the Earth’s crust.

Researchers at the University of Georgia estimate that there are 5 nonillion bacteria on the planet—that’s a five with 30 zeros after it.

Protists and Archaea

Protists are mostly unicellular, but are more complex than bacteria as they contain a nucleus. They’re also essential components of the food chain.

Archaea are single-celled microorganisms that are similar to bacteria but differ in compositions. They thrive in extreme environments too, from high temperatures above 100°C (212°F) in geysers to extremely saline, acidic, or alkaline conditions.

Viruses

Viruses are the most fascinating category of biomass. They have been described as “organisms at the edge of life,” as they are not technically living things. They’re much smaller than bacteria—however, as the COVID-19 pandemic has shown, their microscopic effects cannot be understated.

The Earth’s Biomass, Under Threat

Human activities are having an ongoing impact on Earth’s biomass.

For example, we’ve lost significant forest cover in the past decades, to make room for agricultural land use and livestock production. One result of this is that biodiversity in virtually every region is on the decline.

Will we be able to reverse this trajectory and preserve the diversity of all the biomass on Earth, before it’s too late?

Editor’s note: This visualization was inspired by the work of Javier Zarracina for Vox from a few years ago. Our aim with the above piece was to recognize that while great communication needs no reinvention, it can be enhanced and reimagined to increase editorial impact and help spread knowledge to an even greater share of the population.

Click for Comments

Green

Mapped: Human Impact on the Earth’s Surface

This detailed map looks at where humans have (and haven’t) modified Earth’s terrestrial environment. See human impact in incredible detail.

Published

on

human impact on earths surface

Mapped: Human Impact on the Earth’s Surface

With human population on Earth approaching 8 billion (we’ll likely hit that milestone in 2023), our impact on the planet is becoming harder to ignore with each passing year.

Our cities, infrastructure, agriculture, and pollution are all forms of stress we place on the natural world. This map, by David M. Theobald et al., shows just how much of the planet we’ve now modified. The researchers estimate that 14.6% or 18.5 million km² of land area has been modified – an area greater than Russia.

Defining Human Impact

Human impact on the Earth’s surface can take a number of different forms, and researchers took a nuanced approach to classifying the “modifications” we’ve made. In the end, 10 main stressors were used to create this map:

  1. Built-Up Areas: All of our cities and towns
  2. Agriculture: Areas devoted to crops and pastures
  3. Energy and extractive resources: Primarily locations where oil and gas are extracted
  4. Mines and quarries: Other ground-based natural resource extraction, excluding oil and gas
  5. Power plants: Areas where energy is produced – both renewable and non-renewable
  6. Transportation and service corridors: Primarily roads and railways
  7. Logging: This measures commodity-based forest loss (excludes factors like wildfire and urbanization)
  8. Human intrusion: Typically areas adjacent to population centers and roads that humans access
  9. Natural systems modification: Primarily modifications to water flow, including reservoir creation
  10. Pollution: Phenomenon such as acid rain and fog caused by air pollution

The classification descriptions above are simplified. See the methodology for full descriptions and calculations.

A Closer Look at Human Impact on the Earth’s Surface

To help better understand the level of impact humans can have on the planet, we’ll take a closer look three regions, and see how the situation on the ground relates to these maps.

Land Use Contrasts: Egypt

Almost all of Egypt’s population lives along the Nile and its delta, making it an interesting place to examine land use and human impact.

egypt land use impact zone

The towns and high intensity agricultural land following the river stand out clearly on the human modification map, while the nearby desert shows much less impact.

Intensive Modification: Netherlands

The Netherlands has some of the heavily modified landscapes on Earth, so the way it looks on this map will come as no surprise.

netherlands land use impact zone

The area shown above, Rotterdam’s distinctive port and surround area, renders almost entirely in colors at the top of the human modification scale.

Resource Extraction: West Virginia

It isn’t just cities and towns that show up clearly on this map, it’s also the areas we extract our raw materials from as well. This mountainous region of West Virginia, in the United States, offers a very clear visual example.

west virginia land use impact zone

The mountaintop removal method of mining—which involves blasting mountains in order to retrieve seams of bituminous coal—is common in this region, and mine sites show up clearly in the map.

You can explore the interactive version of this map yourself to view any area on the globe. What surprises you about these patterns of human impact?

Continue Reading

Politics

Interactive Map: Tracking Global Hunger and Food Insecurity

Every day, hunger affects more than 700 million people. This live map from the UN highlights where hunger is hitting hardest around the world.

Published

on

The World Hunger Map

Interactive Map: Tracking Global Hunger and Food Insecurity

Hunger is still one the biggest—and most solvable—problems in the world.

Every day, more than 700 million people (8.8% of the world’s population) go to bed on an empty stomach, according to the UN World Food Programme (WFP).

The WFP’s HungerMap LIVE displayed here tracks core indicators of acute hunger like household food consumption, livelihoods, child nutritional status, mortality, and access to clean water in order to rank countries.

The World Hunger Map

After sitting closer to 600 million from 2014 to 2019, the number of people in the world affected by hunger increased during the COVID-19 pandemic.

In 2020, 155 million people (2% of the world’s population) experienced acute hunger, requiring urgent assistance.

The Fight to Feed the World

The problem of global hunger isn’t new, and attempts to solve it have making headlines for decades.

On July 13, 1985, at Wembley Stadium in London, Prince Charles and Princess Diana officially opened Live Aid, a worldwide rock concert organized to raise money for the relief of famine-stricken Africans.

The event was followed by similar concerts at other arenas around the world, globally linked by satellite to more than a billion viewers in 110 nations, raising more than $125 million ($309 million in today’s dollars) in famine relief for Africa.

But 35+ years later, the continent still struggles. According to the UN, from 12 countries with the highest prevalence of insufficient food consumption in the world, nine are in Africa.

Country % Population Affected by HungerPopulation (millions)Region
Afghanistan 🇦🇫93%40.4Asia
Somalia 🇸🇴68%12.3Africa
Burkina Faso 🇧🇫61%19.8Africa
South Sudan 🇸🇸60%11.0Africa
Mali 🇲🇱60%19.1Africa
Sierra Leone 🇸🇱55%8.2Africa
Syria 🇸🇾55%18.0Middle East
Niger 🇳🇪55%22.4Africa
Lesotho 🇱🇸50%2.1Africa
Guinea 🇬🇳48%12.2Africa
Benin 🇧🇯47%11.5Africa
Yemen 🇾🇪44%30.0Middle East

Approximately 30 million people in Africa face the effects of severe food insecurity, including malnutrition, starvation, and poverty.

Wasted Leftovers

Although many of the reasons for the food crisis around the globe involve conflicts or environmental challenges, one of the big contributors is food waste.

According to the United Nations, one-third of food produced for human consumption is lost or wasted globally. This amounts to about 1.3 billion tons of wasted food per year, worth approximately $1 trillion.

All the food produced but never eaten would be sufficient to feed two billion people. That’s more than twice the number of undernourished people across the globe. Consumers in rich countries waste almost as much food as the entire net food production of sub-Saharan Africa each year.

Solving Global Hunger

While many people may not be “hungry” in the sense that they are suffering physical discomfort, they may still be food insecure, lacking regular access to enough safe and nutritious food for normal growth and development.

Estimates of how much money it would take to end world hunger range from $7 billion to $265 billion per year.

But to tackle the problem, investments must be utilized in the right places. Specialists say that governments and organizations need to provide food and humanitarian relief to the most at-risk regions, increase agricultural productivity, and invest in more efficient supply chains.

Continue Reading

Subscribe

Popular