The Oil Market is Bigger Than All Metal Markets Combined
Connect with us

Energy

The Oil Market is Bigger Than All Metal Markets Combined

Published

on

Chart: The True Size of the Oil Market

Big Oil

The oil market is bigger than all metal markets combined

The Chart of the Week is a weekly Visual Capitalist feature on Fridays.

Ever since the invention of the internal combustion engine, oil has been one of the most crucial commodities on Earth. Without it, modern transportation as we know it would not be possible. Industries such as aviation, aerospace, automobiles, shipping, and the military would look nothing like they do today.

Of course, as we now know, this has all come with some extreme drawbacks from an environmental perspective. And while new green technology and the lithium revolution will aid in eventually reducing the role of oil in transportation, the fact is we still use 94 million barrels per day of crude worldwide.

As a result, the energy industry continues to have huge amounts of influence on our lives. Special interest groups with a focus on energy have influence on a domestic level. Meanwhile, from a foreign policy angle, countries like Saudi Arabia and Russia wield additional geopolitical and economic power because of their natural resources. It’s even arguable that everything from the Gulf War to the more recent Middle East interventions in Libya, Syria, and Iraq have been at least partially to do with oil.

This week’s chart of the week aims to help explain the influence that oil has on countries and markets by using a very simple perspective: the size of the oil market vs. all metal markets combined.

The True Size of the Oil Market

While the amount of uses in one barrel of oil is quite incredible, we still need a mind-boggling amount of the natural resource each year to sustain consumption.

Oil production per year: 34 billion barrels (incl. other liquids)
Oil market size at current prices: $1.7 trillion per year

To consider how big this actually is, we compare the annual market sizes of all major metals and minerals that are mined throughout the world:

  • Gold: $170 billion
  • Iron: $115 billion
  • Copper: $91 billion
  • Aluminum: $90 billion
  • Zinc: $34 billion
  • Manganese: $30 billion
  • Nickel: $21 billion
  • Silver: $20 billion
  • Other metals: $67 billion (Including platinum, palladium, titanium, tin, moly, uranium, and more)

The total amount works out to $660 billion – just a tiny fraction of the size of the oil market.

Note: we focus on raw, physical materials in this analysis. We leave out things like gold futures, or alloy markets such as steel in this analysis. To get market size numbers, we used the latest price multiplied by 2015 demand in most cases. We left out the smaller markets for many other metals like bismuth, antimony, or rhodium. Exact sources can be seen in the chart itself. Oil market size includes other liquids such as lease condensate.

Subscribe to Visual Capitalist
Click for Comments

Energy

Green Steel: Decarbonising with Hydrogen-Fueled Production

How will high emission industries respond to climate change? We highlight industrial emissions and hydrogen’s role in green steel production.

Published

on

This infographic highlights industrial emissions and hydrogen's role in green steel production.
The following content is sponsored by AFRY
This infographic highlights industrial emissions and hydrogen's role in green steel production.

Green Steel: Decarbonising with Hydrogen-Fueled Production

As the fight against climate change ramps up worldwide, the need for industries and economies to respond is immediate.

Of course, different sectors contribute different amounts of greenhouse gas (GHG) emissions, and face different paths to decarbonisation as a result. One massive player? Steel and iron manufacturing, where energy-related emissions account for roughly 6.1% of global emissions.

The following infographic by AFRY highlights the need for steel manufacturing to evolve and decarbonise, and how hydrogen can play a vital role in the “green” steel revolution.

The Modern Steel Production Landscape

Globally, crude steel production totalled 1,951 million tonnes (Mt) in 2021.

This production is spread all over the world, including India, Japan, and the U.S., with the vast majority (1,033 million tonnes) concentrated in China.

But despite being produced in many different places globally, only two main methods of steel production have been honed and utilised over time—electric arc furnace (EAF) and blast furnace basic oxygen furnace (BF-BOF) production.

Both methods traditionally use fossil fuels, and in 2019 contributed 3.6 Gt of carbon dioxide (CO2) emissions:

Steel Production MethodMaterials UtilisedCO2 Emissions (2019)
EAFScrap0.5 Gt
BF-BOFScrap, iron ore, coke3.1 Gt

That’s why one of the main ways the steel industry can decarbonise is through the replacement of fossil fuels.

Hydrogen’s Role in Green Steel Production

Of course, one of the biggest challenges facing the industry is how to decarbonise and produce “green” steel in an extremely competitive market.

As a globally-traded good with fine cost margins, steel production has been associated with major geopolitical issues, including trade disputes and tariffs. But because of climate change, there is also a sudden and massive demand for carbon-friendly production.

And that’s where hydrogen plays a key role. Steel traditionally made in a blast furnace uses coke—a high-carbon fuel made by heating coal without air—as a fuel source to heat iron ore pellets and liquify the pure iron component. This expels a lot of emissions in order to get the iron hot enough to melt (1,200 °C) and be mixed with scrap and made into steel.

The green steel method instead uses hydrogen to reduce the iron pellets into sponge iron, metallic iron that can then be processed to form steel. This process is also done at high temperature but below the melting point of iron (800 – 1,200 °C), saving energy costs.

And by introducing non-fossil fuels to create iron pellets and renewable electricity to turn the sponge iron and scrap into steel, fossil fuels can be removed from the process, significantly reducing emissions as a result.

The Future of Green Steel Production

Given the massive global demand for steel, the need for hydrogen and renewable energy required for green steel production is just as significant.

According to AFRY and the International Renewable Energy Agency, meeting global steel production in 2021 using the green steel method would require 97.6 million tonnes of hydrogen.

And for a truly carbon-free transition to green steel, the energy industry will also need to focus on green hydrogen production using electrolysis. Unlike methods which burn natural gas to release hydrogen, electrolysis entails the splitting of water (H2O) into oxygen and hydrogen using renewable energy sources.

Full green steel production would therefore use green hydrogen, electrolysers running on renewables, and additional renewables for all parts of the supply chain:

Steel Production SourceAnnual Steel ProductionGreen Hydrogen RequiredElectrolyser Capacity RequiredTotal Renewables Capacity Required
Base Reference1 Mt50 kT0.56 GW0.7 GW
U.S.85.8 Mt4.3 Mt48 GW60 GW
Europe103 Mt5.2 Mt58 GW72 GW
China1032.8 Mt51.6 Mt581 GW726 GW
Global1951 Mt97.6 Mt1,097 GW1,371 GW

Currently, green hydrogen production costs are higher than traditional fossil fuel methods, and are dependent on the levelised costs of renewable energy sources. This means they vary by region, but also that they will reduce as production capacity and subsidies for renewables and green hydrogen increase.

And many major European steel manufacturers are already leading the way with pilot and large scale facilities for green steel production. Germany alone has at least seven projects in the works, including by ArcelorMittal and ThyssenKrupp, two of the world’s 10 largest steelmakers by revenue.

AFRY is a thought leadership firm that provides companies with advisory services and sustainable solutions, in their efforts to fight climate change and lead them towards a greater future.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Energy

Charted: 40 Years of Global Energy Production, by Country

Here’s a snapshot of global energy production, and which countries have produced the most fossil fuels, nuclear, and renewable energy since 1980.

Published

on

The Biggest Energy Producers since 1980

Energy was already a hot topic before 2022, but soaring household energy bills and a cost of living crisis has brought it even more to the forefront.

Which countries are the biggest energy producers, and what types of energy are they churning out? This graphic by 911 Metallurgist gives a breakdown of global energy production, showing which countries have used the most fossil fuels, nuclear, and renewable energy since 1980.

All figures refer to the British thermal unit (BTU), equivalent to the heat required to heat one pound of water by one degree Fahrenheit.

Editor’s note: Click on any graphic to see a full-width version that is higher resolution

1. Fossil Fuels

Biggest Producers of Fossil Fuel since 1980

View the full-size infographic

While the U.S. is a dominant player in both oil and natural gas production, China holds the top spot as the world’s largest fossil fuel producer, largely because of its significant production and consumption of coal.

Over the last decade, China has used more coal than the rest of the world, combined.

However, it’s worth noting that the country’s fossil fuel consumption and production have dipped in recent years, ever since the government launched a five-year plan back in 2014 to help reduce carbon emissions.

2. Nuclear Power

Biggest Producers of Nuclear Energy since 1980

View the full-size infographic

The U.S. is the world’s largest producer of nuclear power by far, generating about double the amount of nuclear energy as France, the second-largest producer.

While nuclear power provides a carbon-free alternative to fossil fuels, the nuclear disaster in Fukushima caused many countries to move away from the energy source, which is why global use has dipped in recent years.

Despite the fact that many countries have recently pivoted away from nuclear energy, it still powers about 10% of the world’s electricity. It’s also possible that nuclear energy will play an expanded role in the energy mix going forward, since decarbonization has emerged as a top priority for nations around the world.

3. Renewable Energy

Biggest Producers of Renewable Energy

View the full-size infographic

Renewable energy sources (including wind, hydro, and solar) account for about 23% of electricity production worldwide. China leads the front on renewable production, while the U.S. comes in second place.

While renewable energy production has ramped up in recent years, more countries will need to ramp up their renewable energy production in order to reach net-zero targets by 2050.

Continue Reading

Subscribe

Popular