Connect with us

Energy

The Lithium Revolution

Published

on

| 4,849 views

The Lithium Revolution

The Lithium Revolution

How the shift to clean energy has opened a window of opportunity for energy metals.

“The Lithium Revolution” infographic presented by: Dajin Resources

Commodity investors know that it in recent years, the sector has had a rough ride. Recently, factors such as China’s slowdown have weighed on short-term prices of industrial commodities like fuels and base metals.

However, not all of the energy sector has struggled. The rise of clean energy has continued to gain momentum, which could be a boon for energy metals producers and explorers.

Energy Metals

Simply put, energy metals are metals used in the creation or storage of energy. Here are some examples of energy metals needed to make lithium-ion batteries, which are the storage mechanism of choice for many green energy producers:

Lithium: Lithium is the main ingredient to lithium-ion batteries – the metal’s ions move back and forth to charge and discharge the battery.

Cobalt: Widely used in lithium-ion cathodes

Graphite: The most common anode material for lithium-ion batteries.

Note: Uranium is also used for nuclear power, and copper is fundamental for creating and transporting energy around the world. However, in this infographic we focus on specialty metals.

Electric cars and energy storage for renewable sources have been driving the increases in price and demand for these sectors. Let’s take a look at the specific momentum that has been growing since 2014.

The Momentum

Political and social:
2014

  • Obama reveals clean energy plan: The push will involve more than $1 billion in government funds to back new clean energy and energy efficiency projects along with funding research and development of new energy technologies.
  • Who were the biggest investors in renewable energy in 2014?
    China ($83.3 billion), USA ($38.3 billion), and Japan ($35.7 billion)

2015

  • Volkswagen DieselGate scandal causes uproar, as it becomes clear that millions of the company’s vehicles have cheated emissions tests for years
  • Elon Musk announces a mandate for Tesla Motors to acquire raw materials from the USA when possible.
  • 4,000 people die, each day, of pollution related deaths in China alone.
  • The United States deems lithium as a strategic metal and doesn’t give any statistics of its reserves or production.

Business:
2014

  • Tesla reveals plans to build $5 Billion Gigafactory in the Southwestern US.
  • Tesla announces Nevada as the site of its already-famous Gigafactory project.

2015

  • The 1 millionth electric car is built in September 2015.
  • Report surfaces that Apple plans to ship driverless cars by 2019.
  • Google’s self-driving cars reach the milestone of 1 million miles driven autonomously.
  • Tesla takes $800 million in orders for its new home batteries in just two weeks.
  • A TSX-V traded company was the most recent recipient of an off take agreement to supply Tesla with Lithium Hydroxide.
  • Volkswagen’s stock price gets crushed over 30% in the aftermath of DieselGate.
  • FMC recently announced an “across the board 15% increase in price” in all finished lithium products. Lithium Hydroxide rose from $9,500 per ton, up to $10,870. Lithium Carbonate from $6,500 per ton up to $7,475 USD.

General Trends:

  • Charging stations have increased rapidly around the world.
  • Every major auto manufacture has more than one fully electric car. Some automakers mandate is to have an electric version of every model.
  • The oil price has hit a 6.5 year low, yet electric vehicle sales have held momentum.
  • Lithium battery manufacturing costs are dropping in price while lithium battery technology is getting better.
  • New technology is decreasing the charge time for electric cars. Meanwhile, “miles per charge” is rising, and some cars can even recharge wirelessly.
  • There’s a greater interest in looking after the environment with a continued scare of global warming.
  • Wind and solar storage needed to regulate output of electricity back to the grid.
  • China is a nation now giving priority to EV cars on their highways and parking lots.

Green Shift

The above momentum means energy metals like lithium could continue to buck the general trend of global commodities. So far, the price of lithium has increased steadily since 2011.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.
Click for Comments

Energy

Visualizing the Power Consumption of Bitcoin Mining

Bitcoin mining requires significant amounts of energy, but what does this consumption look like when compared to countries and companies?

Published

on

Visualizing the Power Consumption of Bitcoin Mining

Cryptocurrencies have been some of the most talked-about assets in recent months, with bitcoin and ether prices reaching record highs. These gains were driven by a flurry of announcements, including increased adoption by businesses and institutions.

Lesser known, however, is just how much electricity is required to power the Bitcoin network. To put this into perspective, we’ve used data from the University of Cambridge’s Bitcoin Electricity Consumption Index (CBECI) to compare Bitcoin’s power consumption with a variety of countries and companies.

Why Does Bitcoin Mining Require So Much Power?

When people mine bitcoins, what they’re really doing is updating the ledger of Bitcoin transactions, also known as the blockchain. This requires them to solve numerical puzzles which have a 64-digit hexadecimal solution known as a hash.

Miners may be rewarded with bitcoins, but only if they arrive at the solution before others. It is for this reason that Bitcoin mining facilities—warehouses filled with computers—have been popping up around the world.

These facilities enable miners to scale up their hashrate, also known as the number of hashes produced each second. A higher hashrate requires greater amounts of electricity, and in some cases can even overload local infrastructure.

Putting Bitcoin’s Power Consumption Into Perspective

On March 18, 2021, the annual power consumption of the Bitcoin network was estimated to be 129 terawatt-hours (TWh). Here’s how this number compares to a selection of countries, companies, and more.

NamePopulation Annual Electricity Consumption (TWh)
China1,443M6,543
United States330.2M3,989
All of the world’s data centers-205
State of New York19.3M161
Bitcoin network -129 
Norway5.4M124
Bangladesh165.7M70
Google-12
Facebook-5
Walt Disney World Resort (Florida)-1

Note: A terawatt hour (TWh) is a measure of electricity that represents 1 trillion watts sustained for one hour.
Source: Cambridge Centre for Alternative Finance, Science Mag, New York ISO, Forbes, Facebook, Reedy Creek Improvement District, Worldometer

If Bitcoin were a country, it would rank 29th out of a theoretical 196, narrowly exceeding Norway’s consumption of 124 TWh. When compared to larger countries like the U.S. (3,989 TWh) and China (6,543 TWh), the cryptocurrency’s energy consumption is relatively light.

For further comparison, the Bitcoin network consumes 1,708% more electricity than Google, but 39% less than all of the world’s data centers—together, these represent over 2 trillion gigabytes of storage.

Where Does This Energy Come From?

In a 2020 report by the University of Cambridge, researchers found that 76% of cryptominers rely on some degree of renewable energy to power their operations. There’s still room for improvement, though, as renewables account for just 39% of cryptomining’s total energy consumption.

Here’s how the share of cryptominers that use each energy type vary across four global regions.

Energy SourceAsia-PacificEuropeLatin America
and the Caribbean
North America
Hydroelectric65%60%67%61%
Natural gas38%33%17%44%
Coal65%2%0%28%
Wind23%7%0%22%
Oil12%7%33%22%
Nuclear12%7%0%22%
Solar12%13%17%17%
Geothermal8%0%0%6%

Source: University of Cambridge
Editor’s note: Numbers in each column are not meant to add to 100%

Hydroelectric energy is the most common source globally, and it gets used by at least 60% of cryptominers across all four regions. Other types of clean energy such as wind and solar appear to be less popular.

Coal energy plays a significant role in the Asia-Pacific region, and was the only source to match hydroelectricity in terms of usage. This can be largely attributed to China, which is currently the world’s largest consumer of coal.

Researchers from the University of Cambridge noted that they weren’t surprised by these findings, as the Chinese government’s strategy to ensure energy self-sufficiency has led to an oversupply of both hydroelectric and coal power plants.

Towards a Greener Crypto Future

As cryptocurrencies move further into the mainstream, it’s likely that governments and other regulators will turn their attention to the industry’s carbon footprint. This isn’t necessarily a bad thing, however.

Mike Colyer, CEO of Foundry, a blockchain financing provider, believes that cryptomining can support the global transition to renewable energy. More specifically, he believes that clustering cryptomining facilities near renewable energy projects can mitigate a common issue: an oversupply of electricity.

“It allows for a faster payback on solar projects or wind projects… because they would [otherwise] produce too much energy for the grid in that area”
– Mike Colyer, CEO, Foundry

This type of thinking appears to be taking hold in China as well. In April 2020, Ya’an, a city located in China’s Sichuan province, issued a public guidance encouraging blockchain firms to take advantage of its excess hydroelectricity.

Continue Reading

Energy

How Much Solar Energy is Consumed Per Capita? (1965-2019)

This visualization highlights the growth in solar energy consumption per capita over 54 years. Which countries are leading the way?

Published

on

How Much Solar Energy is Consumed Per Capita?

The long history of solar energy use dates as far back as 4,000 B.C.—when ancient civilizations would use solar architecture to design dwellings that would use more of the sun’s warmth in the winter, while reducing excess heat in the summer.

But despite its long history, we’ve only recently started to rely on solar energy as a renewable power source. This Our World in Data visualization pulls data from BP’s Statistical Review of World Energy to highlight how solar energy consumption per capita has grown in countries around the world over 54 years.

Solar Success: The Top Consumers Per Capita

Solar energy consumption is measured in kilowatt hours (kWh)—and as of the latest estimates, Australia leads the world in terms of highest solar energy consumption per capita at 1,764 kWh in 2019. A combination of factors help achieve this:

  • Optimal weather conditions
  • High gross domestic product (GDP) per capita
  • Tariffs incentivizing the shift to solar

In fact, government subsidies such as financial assistance with installation and feed-in tariffs help bring down the costs of residential solar systems to a mere AUD$1 (US$0.70) per watt.

RankCountrySolar consumption per capita
(kWh, 2019)
Solar’s share of total
(per capita consumption)
#1🇦🇺 Australia1,7642.50%
#2🇯🇵 Japan1,4693.59%
#3🇩🇪 Germany1,4093.22%
#4🇦🇪 UAE1,0560.77%
#5🇮🇹 Italy9953.40%
#6🇬🇷 Greece9363.08%
#7🇧🇪 Belgium8471.30%
#8🇨🇱 Chile8233.39%
#9🇺🇸 U.S.8151.02%
#10🇪🇸 Spain7972.34%

Source: Our World in Data, BP Statistical Review of World Energy 2020
Note that some conversions have been made for primary energy consumption values from Gigajoules (GJ) to kWh.

Coming in second place, Japan has the highest share of solar (3.59%) compared to its total primary energy consumption per capita. After the Fukushima nuclear disaster in 2011, the nation made plans to double its renewable energy use by 2030.

Japan has achieved its present high rates of solar energy use through creative means, from repurposing abandoned golf courses to building floating “solar islands”.

Solar Laggards: The Bottom Consumers Per Capita

On the flip side, several countries that lag behind on solar use are heavily reliant on fossil fuels. These include several members of OPEC—Iraq, Iran, and Venezuela—and former member state Indonesia.

This reliance may also explain why, despite being located in regions that receive the most annual “sunshine hours” in the world, this significant solar potential is yet unrealized.

RankCountrySolar consumption
per capita (kWh, 2019)
Primary energy consumption
per capita (kWh, 2019)
#1🇮🇸 Iceland0No data available
#2🇱🇻 Latvia0No data available
#3🇮🇩 Indonesia<19,140
#4🇺🇿 Uzbekistan<115,029
#5🇭🇰 Hong Kong<146,365
#6🇻🇪 Venezuela121,696
#7🇴🇲 Oman284,535
#8🇹🇲 Turkmenistan367,672
#9🇮🇶 Iraq415,723
#10🇮🇷 Iran541,364

Source: Our World in Data, BP Statistical Review of World Energy 2020
Note that some conversions have been made for primary energy consumption values from Gigajoules (GJ) to kWh.

Interestingly, Iceland is on this list for a different reason. Although the country still relies on renewable energy, it gets this from different sources than solar—a significant share comes from hydropower as well as geothermal power.

The Future of Solar

One thing the visualization above makes clear is that solar’s impact on the global energy mix has only just begun. As the costs associated with producing solar power continue to fall, we’re on a steady track to transform solar energy into a more significant means of generating power.

All in all, with the world’s projected energy mix from total renewables set to increase over 300% by 2040, solar energy is on a rising trend upwards.

Continue Reading

Subscribe

Join the 240,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular