How Much Solar Energy is Consumed Per Capita? (1965-2019)
Connect with us

Energy

How Much Solar Energy is Consumed Per Capita? (1965-2019)

Published

on

Press play above to watch how per capita solar energy consumption increases over 54 years.

How Much Solar Energy is Consumed Per Capita?

The long history of solar energy use dates as far back as 4,000 B.C.—when ancient civilizations would use solar architecture to design dwellings that would use more of the sun’s warmth in the winter, while reducing excess heat in the summer.

But despite its long history, we’ve only recently started to rely on solar energy as a renewable power source. This Our World in Data visualization pulls data from BP’s Statistical Review of World Energy to highlight how solar energy consumption per capita has grown in countries around the world over 54 years.

Solar Success: The Top Consumers Per Capita

Solar energy consumption is measured in kilowatt hours (kWh)—and as of the latest estimates, Australia leads the world in terms of highest solar energy consumption per capita at 1,764 kWh in 2019. A combination of factors help achieve this:

  • Optimal weather conditions
  • High gross domestic product (GDP) per capita
  • Tariffs incentivizing the shift to solar

In fact, government subsidies such as financial assistance with installation and feed-in tariffs help bring down the costs of residential solar systems to a mere AUD$1 (US$0.70) per watt.

RankCountrySolar consumption per capita
(kWh, 2019)
Solar’s share of total
(per capita consumption)
#1🇦🇺 Australia1,7642.50%
#2🇯🇵 Japan1,4693.59%
#3🇩🇪 Germany1,4093.22%
#4🇦🇪 UAE1,0560.77%
#5🇮🇹 Italy9953.40%
#6🇬🇷 Greece9363.08%
#7🇧🇪 Belgium8471.30%
#8🇨🇱 Chile8233.39%
#9🇺🇸 U.S.8151.02%
#10🇪🇸 Spain7972.34%

Source: Our World in Data, BP Statistical Review of World Energy 2020
Note that some conversions have been made for primary energy consumption values from Gigajoules (GJ) to kWh.

Coming in second place, Japan has the highest share of solar (3.59%) compared to its total primary energy consumption per capita. After the Fukushima nuclear disaster in 2011, the nation made plans to double its renewable energy use by 2030.

Japan has achieved its present high rates of solar energy use through creative means, from repurposing abandoned golf courses to building floating “solar islands”.

Solar Laggards: The Bottom Consumers Per Capita

On the flip side, several countries that lag behind on solar use are heavily reliant on fossil fuels. These include several members of OPEC—Iraq, Iran, and Venezuela—and former member state Indonesia.

This reliance may also explain why, despite being located in regions that receive the most annual “sunshine hours” in the world, this significant solar potential is yet unrealized.

RankCountrySolar consumption
per capita (kWh, 2019)
Primary energy consumption
per capita (kWh, 2019)
#1🇮🇸 Iceland0No data available
#2🇱🇻 Latvia0No data available
#3🇮🇩 Indonesia<19,140
#4🇺🇿 Uzbekistan<115,029
#5🇭🇰 Hong Kong<146,365
#6🇻🇪 Venezuela121,696
#7🇴🇲 Oman284,535
#8🇹🇲 Turkmenistan367,672
#9🇮🇶 Iraq415,723
#10🇮🇷 Iran541,364

Source: Our World in Data, BP Statistical Review of World Energy 2020
Note that some conversions have been made for primary energy consumption values from Gigajoules (GJ) to kWh.

Interestingly, Iceland is on this list for a different reason. Although the country still relies on renewable energy, it gets this from different sources than solar—a significant share comes from hydropower as well as geothermal power.

The Future of Solar

One thing the visualization above makes clear is that solar’s impact on the global energy mix has only just begun. As the costs associated with producing solar power continue to fall, we’re on a steady track to transform solar energy into a more significant means of generating power.

All in all, with the world’s projected energy mix from total renewables set to increase over 300% by 2040, solar energy is on a rising trend upwards.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the New Era of Energy

This infographic explores the exponential growth of the technologies that are shaping the new era of energy.

Published

on

The following content is sponsored by Surge Battery Metals
new era of energy

The New Era of Energy

Energy is the pulse of our daily lives, powering everything from our homes to our cars and electronic gadgets. 

Over the last two decades, there’s been an ongoing shift in how we produce and consume energy, largely due to rising climate awareness among both governments and consumers.

The above infographic from Surge Battery Metals highlights the increasing uptake of clean energy technologies and explains the need for the raw materials that power them. This is part two of three infographics in the Energy Independence Series.

The Growth of Clean Energy

Government policies, falling production costs, and climate consciousness have all contributed to the exponential adoption of green energy technologies. 

For example, only a few countries were actively encouraging EV adoption a decade ago, but today, millions of consumers can take advantage of EV tax concessions and purchase subsidies with governments committed to phasing out internal combustion engines. Partly as a result, electric vehicles (EVs) are well on their way to mainstream adoption. 

Here’s a look at how the number of electric cars on the road has grown since 2011, including both battery EVs and plug-in hybrids:

Country/Region2011 Electric Car Stock2021 Electric Car Stock
China10,0007,800,000
Europe20,0005,500,000
U.S.20,0002,000,000
Other20,0001,100,000
Total70,00016,400,000

In 2021, the global electric car stock stood at around 16.4 million cars, up by around 60% from 2020. EV sales also more than doubled to reach 6.8 million units.

Alongside electric cars, renewable energy technologies are also on the road to dominating the global energy mix. In 2021, renewables accounted for 16% of global energy consumption—up from just 8% in 2000. This growth is largely down to solar and wind energy, which made up the majority of new renewable capacity additions:

YearNet Renewable Capacity Additions
(gigawatts)
Solar PV
% Share
Wind
% Share
2011109.428%36%
2012116.425%40%
2013122.930%27%
2014135.130%37%
2015159.731%42%
2016171.344%30%
2017174.855%27%
2018179.354%28%
2019193.856%31%
2020280.248%40%
2021288.954%31%

Every year since 2018, solar and wind have accounted for more than 80% of new renewable capacity additions, contributing to the record-breaking growth of clean energy. 

Despite this growth, the IEA projects that both EVs and renewables need to expand their reach significantly if the world is to achieve net-zero emissions by 2050. Electric car sales need to hit 56 million units by 2030—more than eight times the 6.6 million cars sold in 2021. Similarly, solar PV and wind additions need to quadruple by 2030 from 2021 levels. 

This new era of clean energy will require an increase in the supply of EVs, solar panels, wind turbines, and batteries, which translates into more demand for the unnoticed raw materials behind these technologies.

The Metals Behind Clean Energy

From copper in cables to lithium in batteries, some metals are key to building and growing clean energy capacity. 

In fact, for every megawatt of capacity, solar photovoltaic farms use more than 2,800 kg of copper according to the IEA. Offshore wind farms, which are connected to land by massive undersea cables, use even more copper at 8,000 kg per megawatt. Similarly, electric cars use lithium-ion batteries, which are composed of a variety of minerals, including graphite, copper, nickel, and lithium.

While the demand for these clean energy minerals is skyrocketing, their supply remains a concern, with China dominating the supply chains. In the new era of energy, domestic supplies of these materials will be key to ensuring energy independence and lower reliance on foreign imports.

In the next part of the Energy Independence Series sponsored by Surge Battery Metals, we will explore how the U.S. can build an Energy-Independent Future by developing domestic raw material and battery supply chains.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Energy

Visualizing U.S. Greenhouse Gas Emissions by Sector

The U.S. emits about 6 billion metric tons of greenhouse gases a year. Here’s how these emissions rank by sector.

Published

on

The following content is sponsored by National Public Utilities Council.


Visualizing U.S. Emissions by Sector

Decarbonization efforts in the U.S. are ramping up, and in 2020, greenhouse gas (GHG) emissions were lower than at any point during the previous 30 years.

However there’s still work to be done before various organizations, states, and nationwide targets are met. And when looking at GHG emissions by sector, the data suggests that some groups have more work cut out for them than others.

This graphic from the National Public Utilities Council provides the key data and trends on the total emissions by U.S. sector since 1990.

The Highest Emitting Sectors

Collectively, the U.S. emitted 5,981 million metric tons (MMT) of CO2-equivalent (CO2e) emissions in 2020, which rose 6.1% in 2021.

Here’s how the various sectors in the U.S. compare.

Sector2020 GHG emissions, MMT CO2ePercentage of Total
Transportation1,627.627%
Electricity generation1,482.625%
Industry1,426.224%
Agriculture635.111%
Commercial425.37%
Residential362.06%
U.S. territories23.0<1%

The transportation sector ranks highest by emissions and has been notably impacted by the COVID-19 pandemic, which is still affecting travel and supply chains. This has led to whipsawing figures during the last two years.

For instance, in 2020, the transportation sector’s emissions fell 15%, the steepest fall of any sector. But the largest increase in emissions in 2021 also came from transportation, which is largely credited to the economic and tourism recovery last year.

Following transportation, electricity generation accounted for a quarter of U.S. GHG emissions in 2020, with fossil fuel combustion making up nearly 99% of the sector’s emissions. The other 1% includes waste incineration and other power generation technologies like renewables and nuclear power, which produce emissions during the initial stages of raw material extraction and construction.

Decarbonizing the Power Sector

The Biden Administration has set a goal to make the U.S. power grid run on 100% clean energy by 2035—a key factor in achieving the country’s goal of net zero emissions by 2050.

Industrial factories, commercial buildings, and homes all consume electricity to power their machinery and appliances. Therefore, the power sector can help reduce their carbon footprint by supplying more clean electricity, although this largely depends on the availability of infrastructure for transmission.

Here’s how sectors would look if their respective electricity end-use is taken into account

SectorEmissions by Sector % of Total
Agriculture11%
Transportation27%
Industry30%
Residential & Commercial30%

Percentages may not add up to 100% due to independent rounding

With these adjustments, the industrial, commercial, and residential sectors experience a notable jump, and lead ahead of other categories

Today, the bulk of electricity generation, 60%, comes from natural gas and coal-fired power plants, with nuclear, renewables, and other sources making up 40% of the total.

Energy Source2020 Electric generation, billion kWhShare of total
Natural Gas1,57538.3%
Coal89921.8%
Nuclear77818.9%
Wind3809.2%
Hydropower2606.3%

However, progress and notable strides have been made towards sustainable energy. In 2021, renewables accounted for one-fifth of U.S. electricity generation, roughly doubling their share since 2010.

Coal’s share as a source of electric power has dropped dramatically in recent years. And partially as a result, electricity generation has seen its portion of emissions successfully decrease by 21% , with overall emissions falling from 1,880 million metric tons of CO2 to 1,482 million metric tons.

How Utilities Can Lead the Way

Should these trends persist, the electricity generation sector has a chance to play a pivotal role in the broader decarbonization initiative. And with the bulk of electricity generation in the U.S. coming from investor-owned utilities (IOUs), this is a unique opportunity for IOUs to lead the transition toward cleaner energy.

The National Public Utilities Council is the go-to resource to learn how utilities can lead in the path towards decarbonization.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular