Connect with us

Green

New Waves: The ESG Megatrend Meets Green Bonds

Published

on

Rise of Responsible ESG Investing

outperformance of esg investing

New Waves: The ESG Megatrend Meets Green Bonds

It’s clear that sustainable investing has been thrown into the limelight.

Increasingly, investors are seeing both the financial and social imperative for sustainable investing. In particular, the rapid growth of green bonds—a fixed income investment that is designed to raise funds for the climate or environment—is booming.

The above infographic from Raconteur navigates the growing green bond market against the backdrop of the broader ESG (environmental, social, and governance) investing shift.

Gathering Steam

By the end of 2020, $45 trillion in assets will adhere to sustainable practices, including ESG principles.

Despite the loss of confidence from COVID-19, investors flocked to sustainable-focused funds.In fact, global fund flows hit record levels for Q2 of 2020—surpassing $71 billion.

The fund flows are not without financial warrant. Between April 2015 and April 2019, average returns of socially responsible investments (SRI) outperformed their non-SRI peers. At the same time, 94% of sustainable indices realized stronger returns than their benchmarks between January and March 2020.

The accelerating demand for sustainable investments may seem like old news, but green bonds offer a new avenue.

What Are Green Bonds?

Green bonds raise money for climate and environmental projects, and are issued by governments, corporations, and financial institutions.

Multilateral development banks, which include the European Investment Bank and the World Bank, initially brought them to market in 2007, though they had a slow start. However, in 2019, new issues of green bonds topped $258 billion worldwide—jumping 51% in one year.

Across the green bond market there is a broad spectrum of different debt instruments. These include private placements, covered bonds, and green loans.

Green private placements occur when the sale of bonds are made to private investors, rather than through public offerings. Green covered bonds, on the other hand, are bonds that are backed by a group of assets that are sustainably-focused. Green loans are forms of loans that are meant to finance green projects.

Overall, green bonds can be diversified across a number of different sectors.

The Top Purposes for Green Bonds

What are the top sectors for green bond issuance?

Category20152019
Alternative energy$30.4B$143.8B
Green building$10.7B$63.5B
Sustainable transport$3.7B$58.7B
Energy efficiency$9.5B$47.6B
Sustainable water$3.1B$23.8B
Pollution prevention$1.4B$18.1B
Climate adaptation$1.8B$15.0B
Sustainable forestry/agriculture$1.1B$11.3B

Source: MSCI

Alternative energy, accounting for over $143 billion in green bonds, outpaces all other sectors by a wide margin. Within four years, renewable energy bond issuance has more than quadrupled.

Meanwhile, green building bonds are garnering attention. These instruments finance the construction of energy efficient buildings. Within the industry, a notable green building certification system is the LEED standard, also internationally recognized. Often, real estate investment trusts (REITs) are involved in issuing green building bonds.

Interestingly, Big Tech is also becoming more active within the green bond landscape. Google’s parent company, Alphabet, has issued a record $5.8 billion in corporate sustainability bonds to fund everything from energy efficiency projects to affordable housing.

The Top 10 Countries for Green Bonds

On a country-by-country level, green bonds are most common in the U.S., China, and France.

RankCountryGreen Bond Issuance2018-2019 Change (Amount)
1🇺🇸U.S.$50.6B44%
2🇨🇳China$30.1B1%
3🇫🇷France$29.5B113%
4🇩🇪Germany$18.7B144%
5🇳🇱Netherlands$15.1B105%
6🇸🇪Sweden$10.3B66%
7🇯🇵Japan$7.2B73%
8🇨🇦Canada$7B63%
9🇮🇹Italy$6.8B128%
10🇪🇸Spain$6.5B3%
Top 10 Total$181.8B49%

Source: Climate Bonds Initiative

Germany issued its first multi-billion dollar government green bonds in just 2019. One catalyst behind this was the European Central Bank’s announcement that the environment would become a “mission critical” priority going forward.

This may contribute to the fact that both Germany and France saw the biggest change between 2018 and 2019.

Opening the Floodgates

As sustainable investing becomes front and center on the global agenda, questions about its impact on returns have arisen.

During times of both extreme exuberance and market crisis, companies with higher sustainability ratings have outperformed their respective benchmark. However, there is still a long way to go. Even with the record issuance of green bonds in 2019, they make up just 3% of all global bonds issued.

As demand for sustainable investments quickly grows, could it spell a watershed decade ahead for green bonds?

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.
Click for Comments

Misc

Visualizing the Depth of the Great Lakes

The five Great Lakes account for 21% of the world’s total freshwater. This bathymetric visualization dives into just how deep they are.

Published

on

Visualized: The Depth of The Great Lakes

Click here to view the interactive version of the visualization on Tableau.

As the seasons change, it’s natural to want to enjoy the outdoors to the fullest. The Great Lakes, a distinct geographical region sandwiched between the U.S. and Canada, provides immense opportunity for millions of tourists to do just that every year.

But did you know that altogether the Great Lakes contain 21% of the world’s surface freshwater by volume—or 84% of the surface freshwater in North America?

This bathymetric visualization, created by Alex Varlamov, helps put the sheer size and depth of all five of the Great Lakes into perspective.

What is Bathymetry?

Bathymetry is the study of the underwater depth of ocean or lake floors, a geographical science that falls under the wider umbrella of hydrography.

In essence, it is the underwater equivalent of topography. Contour lines help to represent and study the physical features of bodies of water, from oceans to lakes.

Most bathymetric studies are conducted via sonar systems, transmitting pulses that ‘ping’ off the ocean and lake floor, uncovering what lies below.

The Depth of the Great Lakes, Compared

High on the list of the world’s largest lakes, the five Great Lakes altogether account for over 244,700 km² (94,250 mi²) in total surface area. That’s bigger than the entire United Kingdom.

Lake Superior emerges, well, superior in terms of total surface area, water volume, and both average and maximum depth.

 Surface areaWater volumeAverage depthMaximum depth
Lake Ontario19,000 km²
(7,340 mi²)
1,640 km³
(393 mi³)
86 m
(283 ft)
245 m
(804 ft)
Lake Erie25,700 km²
(9,910 mi²)
480 km³
(116 mi³)
19 m
(62 ft)
64 m
(210 ft)
Lake Michigan58,000 km²
(22,300 mi²)
4,900 km³
(1,180 mi³)
85 m
(279 ft)
282 m
(925 ft)
Lake Huron60,000 km²
(23,000 mi²)
3,500 km³
(850 mi³)
59 m
(195 ft)
228 m
(748 ft)
Lake Superior82,000 km²
(31,700 mi²)
12,000 km³
(2,900 mi³)
147 m
(483 ft)
406 m
(1,333 ft)

Lake Erie is by far the shallowest of the lakes, with an average depth of just 19 meters (62 ft). That means on average, Lake Superior is about eight times deeper.

With that in mind, one drawback of the visualization is that it doesn’t provide an accurate view of how deep these lakes are in relation to one another.

For that, check out this additional visualization also created by Alex Varlamov, which is scaled to the same 20 meter step—in this view, Lake Erie practically disappears.

More than Meets the Eye

The Great Lakes are not only notable for their form, but also their function—they’re a crucial waterway contributing to the economy of the area, supporting over 50 million jobs and contributing $6 trillion to gross domestic product (GDP).

Together, the five Great Lakes feed into the Atlantic Ocean—and when we expand the scope to compare these lakes to vast oceans, trenches, and drill holes, the depth of the Great Lakes barely scratches the surface.

Continue Reading

Energy

Visualizing the Power Consumption of Bitcoin Mining

Bitcoin mining requires significant amounts of energy, but what does this consumption look like when compared to countries and companies?

Published

on

Visualizing the Power Consumption of Bitcoin Mining

Cryptocurrencies have been some of the most talked-about assets in recent months, with bitcoin and ether prices reaching record highs. These gains were driven by a flurry of announcements, including increased adoption by businesses and institutions.

Lesser known, however, is just how much electricity is required to power the Bitcoin network. To put this into perspective, we’ve used data from the University of Cambridge’s Bitcoin Electricity Consumption Index (CBECI) to compare Bitcoin’s power consumption with a variety of countries and companies.

Why Does Bitcoin Mining Require So Much Power?

When people mine bitcoins, what they’re really doing is updating the ledger of Bitcoin transactions, also known as the blockchain. This requires them to solve numerical puzzles which have a 64-digit hexadecimal solution known as a hash.

Miners may be rewarded with bitcoins, but only if they arrive at the solution before others. It is for this reason that Bitcoin mining facilities—warehouses filled with computers—have been popping up around the world.

These facilities enable miners to scale up their hashrate, also known as the number of hashes produced each second. A higher hashrate requires greater amounts of electricity, and in some cases can even overload local infrastructure.

Putting Bitcoin’s Power Consumption Into Perspective

On March 18, 2021, the annual power consumption of the Bitcoin network was estimated to be 129 terawatt-hours (TWh). Here’s how this number compares to a selection of countries, companies, and more.

NamePopulation Annual Electricity Consumption (TWh)
China1,443M6,543
United States330.2M3,989
All of the world’s data centers-205
State of New York19.3M161
Bitcoin network -129 
Norway5.4M124
Bangladesh165.7M70
Google-12
Facebook-5
Walt Disney World Resort (Florida)-1

Note: A terawatt hour (TWh) is a measure of electricity that represents 1 trillion watts sustained for one hour.
Source: Cambridge Centre for Alternative Finance, Science Mag, New York ISO, Forbes, Facebook, Reedy Creek Improvement District, Worldometer

If Bitcoin were a country, it would rank 29th out of a theoretical 196, narrowly exceeding Norway’s consumption of 124 TWh. When compared to larger countries like the U.S. (3,989 TWh) and China (6,543 TWh), the cryptocurrency’s energy consumption is relatively light.

For further comparison, the Bitcoin network consumes 1,708% more electricity than Google, but 39% less than all of the world’s data centers—together, these represent over 2 trillion gigabytes of storage.

Where Does This Energy Come From?

In a 2020 report by the University of Cambridge, researchers found that 76% of cryptominers rely on some degree of renewable energy to power their operations. There’s still room for improvement, though, as renewables account for just 39% of cryptomining’s total energy consumption.

Here’s how the share of cryptominers that use each energy type vary across four global regions.

Energy SourceAsia-PacificEuropeLatin America
and the Caribbean
North America
Hydroelectric65%60%67%61%
Natural gas38%33%17%44%
Coal65%2%0%28%
Wind23%7%0%22%
Oil12%7%33%22%
Nuclear12%7%0%22%
Solar12%13%17%17%
Geothermal8%0%0%6%

Source: University of Cambridge
Editor’s note: Numbers in each column are not meant to add to 100%

Hydroelectric energy is the most common source globally, and it gets used by at least 60% of cryptominers across all four regions. Other types of clean energy such as wind and solar appear to be less popular.

Coal energy plays a significant role in the Asia-Pacific region, and was the only source to match hydroelectricity in terms of usage. This can be largely attributed to China, which is currently the world’s largest consumer of coal.

Researchers from the University of Cambridge noted that they weren’t surprised by these findings, as the Chinese government’s strategy to ensure energy self-sufficiency has led to an oversupply of both hydroelectric and coal power plants.

Towards a Greener Crypto Future

As cryptocurrencies move further into the mainstream, it’s likely that governments and other regulators will turn their attention to the industry’s carbon footprint. This isn’t necessarily a bad thing, however.

Mike Colyer, CEO of Foundry, a blockchain financing provider, believes that cryptomining can support the global transition to renewable energy. More specifically, he believes that clustering cryptomining facilities near renewable energy projects can mitigate a common issue: an oversupply of electricity.

“It allows for a faster payback on solar projects or wind projects… because they would [otherwise] produce too much energy for the grid in that area”
– Mike Colyer, CEO, Foundry

This type of thinking appears to be taking hold in China as well. In April 2020, Ya’an, a city located in China’s Sichuan province, issued a public guidance encouraging blockchain firms to take advantage of its excess hydroelectricity.

Continue Reading

Subscribe

Join the 240,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular