Connect with us

Energy

What Are the Five Major Types of Renewable Energy?

Published

on

Subscribe to the Elements free mailing list for more like this

What Are the Five Major Types of Renewable Energy?

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

The Renewable Energy Age

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Awareness around climate change is shaping the future of the global economy in several ways.

Governments are planning how to reduce emissions, investors are scrutinizing companies’ environmental performance, and consumers are becoming conscious of their carbon footprints. But no matter the stakeholder, energy generation and consumption from fossil fuels is one of the biggest contributors to emissions.

Therefore, renewable energy sources have never been more top-of-mind than they are today.

The Five Types of Renewable Energy

Renewable energy technologies harness the power of the sun, wind, and heat from the Earth’s core, and then transforms it into usable forms of energy like heat, electricity, and fuel.

The above infographic uses data from Lazard, Ember, and other sources to outline everything you need to know about the five key types of renewable energy:

Energy Source% of 2021 Global Electricity GenerationAvg. levelized cost of energy per MWh
Hydro 💧 15.3%$64
Wind 🌬 6.6%$38
Solar ☀️ 3.7%$36
Biomass 🌱 2.3%$114
Geothermal ♨️ <1%$75

Editor’s note: We have excluded nuclear from the mix here, because although it is often defined as a sustainable energy source, it is not technically renewable (i.e. there are finite amounts of uranium).

Though often out of the limelight, hydro is the largest renewable electricity source, followed by wind and then solar.

Together, the five main sources combined for roughly 28% of global electricity generation in 2021, with wind and solar collectively breaking the 10% share barrier for the first time.

The levelized cost of energy (LCOE) measures the lifetime costs of a new utility-scale plant divided by total electricity generation. The LCOE of solar and wind is almost one-fifth that of coal ($167/MWh), meaning that new solar and wind plants are now much cheaper to build and operate than new coal plants over a longer time horizon.

With this in mind, here’s a closer look at the five types of renewable energy and how they work.

1. Wind

Wind turbines use large rotor blades, mounted at tall heights on both land and sea, to capture the kinetic energy created by wind.

When wind flows across the blade, the air pressure on one side of the blade decreases, pulling it down with a force described as the lift. The difference in air pressure across the two sides causes the blades to rotate, spinning the rotor.

The rotor is connected to a turbine generator, which spins to convert the wind’s kinetic energy into electricity.

2. Solar (Photovoltaic)

Solar technologies capture light or electromagnetic radiation from the sun and convert it into electricity.

Photovoltaic (PV) solar cells contain a semiconductor wafer, positive on one side and negative on the other, forming an electric field. When light hits the cell, the semiconductor absorbs the sunlight and transfers the energy in the form of electrons. These electrons are captured by the electric field in the form of an electric current.

A solar system’s ability to generate electricity depends on the semiconductor material, along with environmental conditions like heat, dirt, and shade.

3. Geothermal

Geothermal energy originates straight from the Earth’s core—heat from the core boils underground reservoirs of water, known as geothermal resources.

Geothermal plants typically use wells to pump hot water from geothermal resources and convert it into steam for a turbine generator. The extracted water and steam can then be reinjected, making it a renewable energy source.

4. Hydropower

Similar to wind turbines, hydropower plants channel the kinetic energy from flowing water into electricity by using a turbine generator.

Hydro plants are typically situated near bodies of water and use diversion structures like dams to change the flow of water. Power generation depends on the volume and change in elevation or head of the flowing water.

Greater water volumes and higher heads produce more energy and electricity, and vice versa.

5. Biomass

Humans have likely used energy from biomass or bioenergy for heat ever since our ancestors learned how to build fires.

Biomass—organic material like wood, dry leaves, and agricultural waste—is typically burned but considered renewable because it can be regrown or replenished. Burning biomass in a boiler produces high-pressure steam, which rotates a turbine generator to produce electricity.

Biomass is also converted into liquid or gaseous fuels for transportation. However, emissions from biomass vary with the material combusted and are often higher than other clean sources.

When Will Renewable Energy Take Over?

Despite the recent growth of renewables, fossil fuels still dominate the global energy mix.

Most countries are in the early stages of the energy transition, and only a handful get significant portions of their electricity from clean sources. However, the ongoing decade might see even more growth than recent record-breaking years.

The IEA forecasts that, by 2026, global renewable electricity capacity is set to grow by 60% from 2020 levels to over 4,800 gigawatts—equal to the current power output of fossil fuels and nuclear combined. So, regardless of when renewables will take over, it’s clear that the global energy economy will continue changing.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the Uranium Mining Industry in 3 Charts

These visuals highlight the uranium mining industry and its output, as well as the trajectory of nuclear energy from 1960 to today.

Published

on

When uranium was discovered in 1789 by Martin Heinrich Klaproth, it’s likely the German chemist didn’t know how important the element would become to human life.

Used minimally in glazing and ceramics, uranium was originally mined as a byproduct of producing radium until the late 1930s. However, the discovery of nuclear fission, and the potential promise of nuclear power, changed everything.

What’s the current state of the uranium mining industry? This series of charts from Truman Du highlights production and the use of uranium using 2021 data from the World Nuclear Association (WNA) and Our World in Data.

Who are the Biggest Uranium Miners in the World?

Most of the world’s biggest uranium suppliers are based in countries with the largest uranium deposits, like Australia, Kazakhstan, and Canada.

The largest of these companies is Kazatomprom, a Kazakhstani state-owned company that produced 25% of the world’s new uranium supply in 2021.

A donut chart showing the biggest uranium mining companies and the percentage they contribute to the world's supply of uranium.

As seen in the above chart, 94% of the roughly 48,000 tonnes of uranium mined globally in 2021 came from just 13 companies.

Rank Company2021 Uranium Production (tonnes)Percent of Total
1🇰🇿 Kazatomprom 11,85825%
2🇫🇷 Orano 4,5419%
3🇷🇺 Uranium One 4,5149%
4🇨🇦 Cameco 4,3979%
5🇨🇳 CGN 4,1129%
6🇺🇿 Navoi Mining3,5007%
7🇨🇳 CNNC 3,5627%
8🇷🇺 ARMZ 2,6355%
9🇦🇺 General Atomics/Quasar 2,2415%
10🇦🇺 BHP 1,9224%
11🇬🇧 Energy Asia 9002%
12🇳🇪 Sopamin 8092%
13🇺🇦 VostGok 4551%
14Other2,8866%
Total48,332100%

France’s Orano, another state-owned company, was the world’s second largest producer of uranium at 4,541 tonnes.

Companies rounding out the top five all had similar uranium production numbers to Orano, each contributing around 9% of the global total. Those include Uranium One from Russia, Cameco from Canada, and CGN in China.

Where are the Largest Uranium Mines Found?

The majority of uranium deposits around the world are found in 16 countries with Australia, Kazakhstan, and Canada accounting for for nearly 40% of recoverable uranium reserves.

But having large reserves doesn’t necessarily translate to uranium production numbers. For example, though Australia has the biggest single deposit of uranium (Olympic Dam) and the largest reserves overall, the country ranks fourth in uranium supplied, coming in at 9%.

Here are the top 10 uranium mines in the world, accounting for 53% of the world’s supply.

A map of the largest mines and countries that undertake uranium mining.

Of the largest mines in the world, four are found in Kazakhstan. Altogether, uranium mined in Kazakhstan accounted for 45% of the world’s uranium supply in 2021.

Uranium MineCountryMain Owner2021 Production
Cigar Lake🇨🇦 CanadaCameco/Orano4,693t
Inkai 1-3🇰🇿 KazakhstanKazaktomprom/Cameco3,449t
Husab🇳🇦 NamibiaSwakop Uranium (CGN)3,309t
Karatau (Budenovskoye 2)🇰🇿 KazakhstanUranium One/Kazatomprom2,561t
Rössing🇳🇦 NamibiaCNNC2,444t
Four Mile🇦🇺 AustraliaQuasar2,241t
SOMAIR🇳🇪 NigerOrano1,996t
Olympic Dam🇦🇺 AustraliaBHP Billiton1,922t
Central Mynkuduk🇰🇿 KazakhstanOrtalyk1,579t
Kharasan 1🇰🇿 KazakhstanKazatomprom/Uranium One1,579t

Namibia, which has two of the five largest uranium mines in operation, is the second largest supplier of uranium by country, at 12%, followed by Canada at 10%.

Interestingly, the owners of these mines are not necessarily local. For example, France’s Orano operates mines in Canada and Niger. Russia’s Uranium One operates mines in Kazakhstan, the U.S., and Tanzania. China’s CGN owns mines in Namibia.

And despite the African continent holding a sizable amount of uranium reserves, no African company placed in the top 10 biggest companies by production. Sopamin from Niger was the highest ranked at #12 with 809 tonnes mined.

Uranium Mining and Nuclear Energy

Uranium mining has changed drastically since the first few nuclear power plants came online in the 1950s.

For 30 years, uranium production grew steadily due to both increasing demand for nuclear energy and expanding nuclear arsenals, eventually peaking at 69,692 tonnes mined in 1980 at the height of the Cold War.

Nuclear energy production (measured in terawatt-hours) also rose consistently until the 21st century, peaking in 2001 when it contributed nearly 7% to the world’s energy supply. But in the years following, it started to drop and flatline.

A chart plotting the total nuclear energy produced since 1950 and the percentage it contributes to the world's energy supply.

By 2021, nuclear energy had fallen to 4.3% of global energy production. Several nuclear accidents—Chernobyl, Three Mile Island, and Fukushima—contributed to turning sentiment against nuclear energy.

YearNuclear Energy
Production
% of Total Energy
196572 TWh0.2%
196698 TWh0.2%
1967116 TWh0.2%
1968148 TWh0.3%
1969175 TWh0.3%
1970224 TWh0.4%
1971311 TWh0.5%
1972432 TWh0.7%
1973579 TWh0.9%
1974756 TWh1.1%
19751,049 TWh1.6%
19761,228 TWh1.7%
19771,528 TWh2.1%
19781,776 TWh2.3%
19791,847 TWh2.4%
19802,020 TWh2.6%
19812,386 TWh3.1%
19822,588 TWh3.4%
19832,933 TWh3.7%
19843,560 TWh4.3%
19854,225 TWh5%
19864,525 TWh5.3%
19874,922 TWh5.5%
19885,366 TWh5.8%
19895,519 TWh5.8%
19905,676 TWh5.9%
19915,948 TWh6.2%
19925,993 TWh6.2%
19936,199 TWh6.4%
19946,316 TWh6.4%
19956,590 TWh6.5%
19966,829 TWh6.6%
19976,782 TWh6.5%
19986,899 TWh6.5%
19997,162 TWh6.7%
20007,323 TWh6.6%
20017,481 TWh6.7%
20027,552 TWh6.6%
20037,351 TWh6.2%
20047,636 TWh6.2%
20057,608 TWh6%
20067,654 TWh5.8%
20077,452 TWh5.5%
20087,382 TWh5.4%
20097,233 TWh5.4%
20107,374 TWh5.2%
20117,022 TWh4.9%
20126,501 TWh4.4%
20136,513 TWh4.4%
20146,607 TWh4.4%
20156,656 TWh4.4%
20166,715 TWh4.3%
20176,735 TWh4.3%
20186,856 TWh4.2%
20197,073 TWh4.3%
20206,789 TWh4.3%
20217,031 TWh4.3%

More recently, a return to nuclear energy has gained some support as countries push for transitions to cleaner energy, since nuclear power generates no direct carbon emissions.

What’s Next for Nuclear Energy?

Nuclear remains one of the least harmful sources of energy, and some countries are pursuing advancements in nuclear tech to fight climate change.

Small, modular nuclear reactors are one of the current proposed solutions to both bring down costs and reduce construction time of nuclear power plants. The benefits include smaller capital investments and location flexibility by trading off energy generation capacity.

With countries having to deal with aging nuclear reactors and climate change at the same time, replacements need to be considered. Will they come in the form of new nuclear power and uranium mining, or alternative sources of energy?

Continue Reading

Subscribe

Popular