Visualizing 50+ Years of the G20’s Energy Mix (1965–2019)
Connect with us

Energy

Visualizing 50+ Years of the G20’s Energy Mix

Published

on

Visualizing 50+ Years of the G20’s Energy Mix (1965–2019)

Over the last 50 years, the energy mix of G20 countries has changed drastically in some ways.

With many countries and regions pledging to move away from fossil fuels and towards cleaner sources of energy, the overall energy mix is becoming more diversified. But shutting down plants and replacing them with new sources takes time, and most countries are still incredibly reliant on fossil fuels.

This video from James Eagle uses data from BP’s Statistical Review of World Energy to examine how the energy mix of G20 members has changed from 1965 to 2019.

G20’s Energy History: Fossil Fuel Dependence (1965–1999)

At first, there was oil and coal.

From the 1960s to the 1980s, energy consumption in the G20 countries relied almost entirely on these two fossil fuels. They were the cheapest and most efficient sources of energy for most, though some countries also used a lot of natural gas, like the United States, Mexico, and Russia.

Country (Energy Mix - 1965)OilCoalOther
🇦🇷 Argentina83%3%14%
🇦🇺 Australia45%50%5%
🇧🇷 Brazil66%8%26%
🇨🇦 Canada47%13%40%
🇨🇳 China8%87%5%
🇪🇺 EU47%45%8%
🇫🇷 France49%37%14%
🇩🇪 Germany34%63%3%
🇮🇳 India24%67%9%
🇮🇩 Indonesia86%2%12%
🇮🇹 Italy66%11%23%
🇯🇵 Japan56%31%13%
🇲🇽 Mexico61%3%36%
🇷🇺 Russia29%50%21%
🇸🇦 Saudi Arabia98%0%2%
🇿🇦 South Africa19%81%0%
🇰🇷 South Korea20%77%3%
🇹🇷 Turkey46%47%7%
🇬🇧 UK38%59%3%
🇺🇸 U.S.45%22%33%

But the use of oil for energy started to decrease, beginning most notably in the 1980s. Rocketing oil prices forced many utilities to turn to coal and natural gas (which were becoming cheaper), while others in countries like France, Japan, and the U.S. embraced the rise of nuclear power.

This is most notable in countries with high historic oil consumption, like Argentina and Indonesia. In 1965, these three countries relied on oil for more than 83% of energy, but by 1999, oil made up just 55% of Indonesia’s energy mix and 36% of Argentina’s.

Even Saudi Arabia, the world’s largest oil exporter, began to utilize oil less. By 1999, oil was used for 65% of energy in the country, down from a 1965 high of 97%.

G20’s Energy Mix: Gas and Renewables Climb (2000–2019)

The conversation around energy changed in the 21st century. Before, countries were focused primarily on efficiency and cost, but very quickly, they had to start contending with emissions.

Climate change was already on everyone’s radar. The UN Framework Convention on Climate Change was signed in 1992, and the resulting Kyoto Protocol aimed at reducing greenhouse gas emissions was signed in 1997.

But when the Kyoto Protocol went into effect in 2005, countries had very different options available to them. Some started to lean more heavily on hydroelectricity, though countries that already utilized them like Canada and Brazil had to look elsewhere. Others turned to nuclear power, but the 2011 Fukushima nuclear disaster in Japan turned many away.

This is the period of time that renewables started to pick up steam, primarily in the form of wind power at first. By 2019, the G20 members that relied on renewables the most were Brazil (16%), Germany (16%), and the UK (14%).

Country (Energy Mix - 2019)Natural GasNuclearHydroelectricRenewablesOther
🇦🇷 Argentina49%2%10%4%35%
🇦🇺 Australia30%0%2%7%61%
🇧🇷 Brazil10%1%29%16%44%
🇨🇦 Canada31%6%24%4%35%
🇨🇳 China8%2%8%5%77%
🇪🇺 EU22%11%4%10%53%
🇫🇷 France16%37%5%6%36%
🇩🇪 Germany24%5%1%16%54%
🇮🇳 India6%1%4%4%85%
🇮🇩 Indonesia18%0%2%4%76%
🇮🇹 Italy40%0%6%10%44%
🇯🇵 Japan21%3%4%6%66%
🇲🇽 Mexico42%1%3%5%49%
🇷🇺 Russia54%6%6%0%34%
🇸🇦 Saudi Arabia37%0%0%0%63%
🇿🇦 South Africa3%2%0%2%93%
🇰🇷 South Korea16%11%0%2%71%
🇹🇷 Turkey24%0%12%6%58%
🇬🇧 UK36%6%1%14%43%
🇺🇸 U.S.32%8%3%6%51%

However, the need to reduce emissions quickly made many countries make a simpler switch: cut back on oil and coal and utilize more natural gas. Bituminous coal, one of the most commonly used in steam-electric power stations, emits 76% more CO₂ than natural gas. Diesel fuel and heating oil used in oil power plants emit 38% more CO₂ than natural gas.

As countries begin to push more strongly towards a carbon-neutral future, the energy mix of the 2020s and onward will continue to change.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing China’s Dominance in Battery Manufacturing (2022-2027P)

This infographic breaks down battery manufacturing capacity by country in 2022 and 2027.

Published

on

battery manufacturing capacity by country infographic

Visualizing China’s Dominance in Battery Manufacturing

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

With the world gearing up for the electric vehicle era, battery manufacturing has become a priority for many nations, including the United States.

However, having entered the race for batteries early, China is far and away in the lead.

Using the data and projections behind BloombergNEF’s lithium-ion supply chain rankings, this infographic visualizes battery manufacturing capacity by country in 2022 and 2027p, highlighting the extent of China’s battery dominance.

Battery Manufacturing Capacity by Country in 2022

In 2022, China had more battery production capacity than the rest of the world combined.

RankCountry2022 Battery Cell
Manufacturing Capacity, GWh
% of Total
#1 🇨🇳 China89377%
#2🇵🇱 Poland736%
#3🇺🇸 U.S.706%
#4🇭🇺 Hungary383%
#5🇩🇪 Germany313%
#6🇸🇪 Sweden161%
#7🇰🇷 South Korea151%
#8🇯🇵 Japan121%
#9🇫🇷 France61%
#10🇮🇳 India30.2%
🌍 Other71%
Total1,163100%

With nearly 900 gigawatt-hours of manufacturing capacity or 77% of the global total, China is home to six of the world’s 10 biggest battery makers. Behind China’s battery dominance is its vertical integration across the rest of the EV supply chain, from mining the metals to producing the EVs. It’s also the largest EV market, accounting for 52% of global sales in 2021.

Poland ranks second with less than one-tenth of China’s capacity. In addition, it hosts LG Energy Solution’s Wroclaw gigafactory, the largest of its kind in Europe and one of the largest in the world. Overall, European countries (including non-EU members) made up just 14% of global battery manufacturing capacity in 2022.

Although it lives in China’s shadow when it comes to batteries, the U.S. is also among the world’s lithium-ion powerhouses. As of 2022, it had eight major operational battery factories, concentrated in the Midwest and the South.

China’s Near-Monopoly Continues Through 2027

Global lithium-ion manufacturing capacity is projected to increase eightfold in the next five years. Here are the top 10 countries by projected battery production capacity in 2027:

RankCountry2027P Battery Cell
Manufacturing Capacity, GWh
% of Total
#1🇨🇳 China6,19769%
#2🇺🇸 U.S.90810%
#3🇩🇪 Germany5036%
#4🇭🇺 Hungary1942%
#5🇸🇪 Sweden1352%
#6🇵🇱 Poland1121%
#7🇨🇦 Canada1061%
#8🇪🇸 Spain981%
#9🇫🇷 France891%
#10 🇲🇽 Mexico801%
🌍 Other5236%
Total8,945100%

China’s well-established advantage is set to continue through 2027, with 69% of the world’s battery manufacturing capacity.

Meanwhile, the U.S. is projected to increase its capacity by more than 10-fold in the next five years. EV tax credits in the Inflation Reduction Act are likely to incentivize battery manufacturing by rewarding EVs made with domestic materials. Alongside Ford and General Motors, Asian companies including Toyota, SK Innovation, and LG Energy Solution have all announced investments in U.S. battery manufacturing in recent months.

Europe will host six of the projected top 10 countries for battery production in 2027. Europe’s current and future battery plants come from a mix of domestic and foreign firms, including Germany’s Volkswagen, China’s CATL, and South Korea’s SK Innovation.

Can Countries Cut Ties With China?

Regardless of the growth in North America and Europe, China’s dominance is unmatched.

Battery manufacturing is just one piece of the puzzle, albeit a major one. Most of the parts and metals that make up a battery—like battery-grade lithium, electrolytes, separators, cathodes, and anodes—are primarily made in China.

Therefore, combating China’s dominance will be expensive. According to Bloomberg, the U.S. and Europe will have to invest $87 billion and $102 billion, respectively, to meet domestic battery demand with fully local supply chains by 2030.

Continue Reading

Subscribe

Popular