Visualizing 50+ Years of the G20’s Energy Mix (1965–2019)
Connect with us

Energy

Visualizing 50+ Years of the G20’s Energy Mix

Published

on

Visualizing 50+ Years of the G20’s Energy Mix (1965–2019)

Over the last 50 years, the energy mix of G20 countries has changed drastically in some ways.

With many countries and regions pledging to move away from fossil fuels and towards cleaner sources of energy, the overall energy mix is becoming more diversified. But shutting down plants and replacing them with new sources takes time, and most countries are still incredibly reliant on fossil fuels.

This video from James Eagle uses data from BP’s Statistical Review of World Energy to examine how the energy mix of G20 members has changed from 1965 to 2019.

G20’s Energy History: Fossil Fuel Dependence (1965–1999)

At first, there was oil and coal.

From the 1960s to the 1980s, energy consumption in the G20 countries relied almost entirely on these two fossil fuels. They were the cheapest and most efficient sources of energy for most, though some countries also used a lot of natural gas, like the United States, Mexico, and Russia.

Country (Energy Mix - 1965)OilCoalOther
🇦🇷 Argentina83%3%14%
🇦🇺 Australia45%50%5%
🇧🇷 Brazil66%8%26%
🇨🇦 Canada47%13%40%
🇨🇳 China8%87%5%
🇪🇺 EU47%45%8%
🇫🇷 France49%37%14%
🇩🇪 Germany34%63%3%
🇮🇳 India24%67%9%
🇮🇩 Indonesia86%2%12%
🇮🇹 Italy66%11%23%
🇯🇵 Japan56%31%13%
🇲🇽 Mexico61%3%36%
🇷🇺 Russia29%50%21%
🇸🇦 Saudi Arabia98%0%2%
🇿🇦 South Africa19%81%0%
🇰🇷 South Korea20%77%3%
🇹🇷 Turkey46%47%7%
🇬🇧 UK38%59%3%
🇺🇸 U.S.45%22%33%

But the use of oil for energy started to decrease, beginning most notably in the 1980s. Rocketing oil prices forced many utilities to turn to coal and natural gas (which were becoming cheaper), while others in countries like France, Japan, and the U.S. embraced the rise of nuclear power.

This is most notable in countries with high historic oil consumption, like Argentina and Indonesia. In 1965, these three countries relied on oil for more than 83% of energy, but by 1999, oil made up just 55% of Indonesia’s energy mix and 36% of Argentina’s.

Even Saudi Arabia, the world’s largest oil exporter, began to utilize oil less. By 1999, oil was used for 65% of energy in the country, down from a 1965 high of 97%.

G20’s Energy Mix: Gas and Renewables Climb (2000–2019)

The conversation around energy changed in the 21st century. Before, countries were focused primarily on efficiency and cost, but very quickly, they had to start contending with emissions.

Climate change was already on everyone’s radar. The UN Framework Convention on Climate Change was signed in 1992, and the resulting Kyoto Protocol aimed at reducing greenhouse gas emissions was signed in 1997.

But when the Kyoto Protocol went into effect in 2005, countries had very different options available to them. Some started to lean more heavily on hydroelectricity, though countries that already utilized them like Canada and Brazil had to look elsewhere. Others turned to nuclear power, but the 2011 Fukushima nuclear disaster in Japan turned many away.

This is the period of time that renewables started to pick up steam, primarily in the form of wind power at first. By 2019, the G20 members that relied on renewables the most were Brazil (16%), Germany (16%), and the UK (14%).

Country (Energy Mix - 2019)Natural GasNuclearHydroelectricRenewablesOther
🇦🇷 Argentina49%2%10%4%35%
🇦🇺 Australia30%0%2%7%61%
🇧🇷 Brazil10%1%29%16%44%
🇨🇦 Canada31%6%24%4%35%
🇨🇳 China8%2%8%5%77%
🇪🇺 EU22%11%4%10%53%
🇫🇷 France16%37%5%6%36%
🇩🇪 Germany24%5%1%16%54%
🇮🇳 India6%1%4%4%85%
🇮🇩 Indonesia18%0%2%4%76%
🇮🇹 Italy40%0%6%10%44%
🇯🇵 Japan21%3%4%6%66%
🇲🇽 Mexico42%1%3%5%49%
🇷🇺 Russia54%6%6%0%34%
🇸🇦 Saudi Arabia37%0%0%0%63%
🇿🇦 South Africa3%2%0%2%93%
🇰🇷 South Korea16%11%0%2%71%
🇹🇷 Turkey24%0%12%6%58%
🇬🇧 UK36%6%1%14%43%
🇺🇸 U.S.32%8%3%6%51%

However, the need to reduce emissions quickly made many countries make a simpler switch: cut back on oil and coal and utilize more natural gas. Bituminous coal, one of the most commonly used in steam-electric power stations, emits 76% more CO₂ than natural gas. Diesel fuel and heating oil used in oil power plants emit 38% more CO₂ than natural gas.

As countries begin to push more strongly towards a carbon-neutral future, the energy mix of the 2020s and onward will continue to change.

Click for Comments

Energy

Mapped: Solar and Wind Power by Country

Wind and solar make up 10% of the world’s electricity. Combined, they are the fourth-largest source of electricity after coal, gas, and hydro.

Published

on

Mapped: Solar and Wind Power by Country

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Wind and solar generate over a tenth of the world’s electricity. Taken together, they are the fourth-largest source of electricity, behind coal, gas, and hydro.

This infographic based on data from Ember shows the rise of electricity from these two clean sources over the last decade.

Europe Leads in Wind and Solar

Wind and solar generated 10.3% of global electricity for the first time in 2021, rising from 9.3% in 2020, and doubling their share compared to 2015 when the Paris Climate Agreement was signed.

In fact, 50 countries (26%) generated over a tenth of their electricity from wind and solar in 2021, with seven countries hitting this landmark for the first time: China, Japan, Mongolia, Vietnam, Argentina, Hungary, and El Salvador.

Denmark and Uruguay achieved 52% and 47% respectively, leading the way in technology for high renewable grid integration.

RankTop Countries Solar/Wind Power Share
#1🇩🇰 Denmark 51.9%
#2🇺🇾 Uruguay 46.7%
#3🇱🇺 Luxembourg 43.4%
#4🇱🇹 Lithuania 36.9%
#5🇪🇸 Spain 32.9%
#6🇮🇪 Ireland 32.9%
#7🇵🇹 Portugal 31.5%
#8🇩🇪 Germany 28.8%
#9🇬🇷 Greece 28.7%
#10🇬🇧 United Kingdom 25.2%

From a regional perspective, Europe leads with nine of the top 10 countries. On the flipside, the Middle East and Africa have the fewest countries reaching the 10% threshold.

Further Renewables Growth Needed to meet Global Climate Goals

The electricity sector was the highest greenhouse gas emitting sector in 2020.

According to the International Energy Agency (IEA), the sector needs to hit net zero globally by 2040 to achieve the Paris Agreement’s goals of limiting global heating to 1.5 degrees. And to hit that goal, wind and solar power need to grow at nearly a 20% clip each year to 2030.

Despite the record rise in renewables, solar and wind electricity generation growth currently doesn’t meet the required marks to reach the Paris Agreement’s goals.

In fact, when the world faced an unprecedented surge in electricity demand in 2021, only 29% of the global rise in electricity demand was met with solar and wind.

Transition Underway

Even as emissions from the electricity sector are at an all-time high, there are signs that the global electricity transition is underway.

Governments like the U.S., Germany, UK, and Canada are planning to increase their share of clean electricity within the next decade and a half. Investments are also coming from the private sector, with companies like Amazon and Apple extending their positions on renewable energy to become some of the biggest buyers overall.

More wind and solar are being added to grids than ever, with renewables expected to provide the majority of clean electricity needed to phase out fossil fuels.

Continue Reading

Energy

How Far Are We From Phasing Out Coal?

In 2021 coal-fired electricity generation reached all-time highs, rising 9% from the year prior. Here’s what it’d take to phase it out of the energy mix.

Published

on

How Far Are We From Phasing Out Coal?

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

At the COP26 conference last year, 40 nations agreed to phase coal out of their energy mixes.

Despite this, in 2021, coal-fired electricity generation reached all-time highs globally, showing that eliminating coal from the energy mix will not be a simple task.

This infographic shows the aggressive phase-out of coal power that would be required in order to reach net zero goals by 2050, based on an analysis by Ember that uses data provided by the International Energy Agency (IEA).

Low-Cost Comes at a High Environmental Cost

Coal-powered electricity generation rose by 9.0% in 2021 to 10,042 Terawatt-hours (TWh), marking the biggest percentage rise since 1985.

The main reason is cost. Coal is the world’s most affordable energy fuel. Unfortunately, low-cost energy comes at a high cost for the environment, with coal being the largest source of energy-related CO2 emissions.

China has the highest coal consumption, making up 54% of the world’s coal electricity generation. The country’s consumption jumped 12% between 2010 and 2020, despite coal making up a lower percentage of the country’s energy mix in relative terms.

Top Consumers2020 Consumption (Exajoules) Share of global consumption
China 🇨🇳82.354.3%
India 🇮🇳17.511.6%
United States 🇺🇸9.26.1%
Japan 🇯🇵4.63.0%
South Africa 🇿🇦3.52.3%
Russia 🇷🇺3.32.2%
Indonesia 🇮🇩3.32.2%
South Korea 🇰🇷3.02.0%
Vietnam 🇻🇳2.11.4%
Germany 🇩🇪1.81.2%

Together, China and India account for 66% of global coal consumption and emit about 35% of the world’s greenhouse gasses (GHG). If you add the United States to the mix, this goes up to 72% of coal consumption and 49% of GHGs.

How Urgent is to Phase Out Coal?

According to the United Nations, emissions from current and planned fossil energy infrastructure are already more than twice the amount that would push the planet over 1.5°C of global heating, a level that scientists say could bring more intense heat, fire, storms, flooding, and drought than the present 1.2°C.

Apart from being the largest source of CO2 emissions, coal combustion is also a major threat to public health because of the fine particulate matter released into the air.

As just one example of this impact, a recent study from Harvard University estimates air pollution from fossil fuel combustion is responsible for 1 in 5 deaths globally.

The Move to Renewables

Coal-powered electricity generation must fall by 13% every year until 2030 to achieve the Paris Agreement’s goals of keeping global heating to only 1.5 degrees.

To reach the mark, countries would need to speed up the shift from their current carbon-intensive pathways to renewable energy sources like wind and solar.

How fast the transition away from coal will be achieved depends on a complicated balance between carbon emissions cuts and maintaining economic growth, the latter of which is still largely dependent on coal power.

Continue Reading

Subscribe

Popular