Decarbonization 101: What Carbon Emissions Are Part Of Your Footprint?
Connect with us

Sponsored

Decarbonization 101: What Carbon Emissions Are Part Of Your Footprint?

Published

on

The following content is sponsored by the National Public Utility Council

What Carbon Emissions Are Part Of Your Footprint?

With many countries and companies formalizing commitments to meeting the Paris Agreement carbon emissions reduction goals, the pressure to decarbonize is on.

A common commitment from organizations is a “net-zero” pledge to both reduce and balance carbon emissions with carbon offsets. Germany, France and the UK have already signed net-zero emissions laws targeting 2050, and the U.S. and Canada recently committed to synchronize efforts towards the same net-zero goal by 2050.

As organizations face mounting pressure from governments and consumers to decarbonize, they need to define the carbon emissions that make up their carbon footprints in order to measure and minimize them.

This infographic from the National Public Utility Council highlights the three scopes of carbon emissions that make up a company’s carbon footprint.

The 3 Scopes of Carbon Emissions To Know

The most commonly used breakdown of a company’s carbon emissions are the three scopes defined by the Greenhouse Gas Protocol, a partnership between the World Resources Institute and Business Council for Sustainable Development.

The GHG Protocol separates carbon emissions into three buckets: emissions caused directly by the company, emissions caused by the company’s consumption of electricity, and emissions caused by activities in a company’s value chain.

Scope 1: Direct emissions

These emissions are direct GHG emissions that occur from sources owned or controlled by the company, and are generally the easiest to track and change. Scope 1 emissions include:

  • Factories
  • Facilities
  • Boilers
  • Furnaces
  • Company vehicles
  • Chemical production (not including biomass combustion)

Scope 2: Indirect electricity emissions

These emissions are indirect GHG emissions from the generation of purchased electricity consumed by the company, which requires tracking both your company’s energy consumption and the relevant electrical output type and emissions from the supplying utility. Scope 2 emissions include:

  • Electricity use (e.g. lights, computers, machinery, heating, steam, cooling)
  • Emissions occur at the facility where electricity is generated (fossil fuel combustion, etc.)

Scope 3: Value chain emissions

These emissions include all other indirect GHG emissions occurring as a consequence of a company’s activities both upstream and downstream. They aren’t controlled or owned by the company, and many reporting bodies consider them optional to track, but they are often the largest source of a company’s carbon footprint and can be impacted in many different ways. Scope 3 emissions include:

  • Purchased goods and services
  • Transportation and distribution
  • Investments
  • Employee commute
  • Business travel
  • Use and waste of products
  • Company waste disposal

The Carbon Emissions Not Measured

Most uses of the GHG Protocol by companies includes many of the most common and impactful greenhouse gases that were covered by the UN’s 1997 Kyoto Protocol. These include carbon dioxide, methane, and nitrous oxide, as well as other gases and carbon-based compounds.

But the standard doesn’t include other emissions that either act as minor greenhouse gases or are harmful to other aspects of life, such as general pollutants or ozone depletion.

These are emissions that companies aren’t required to track in the pressure to decarbonize, but are still impactful and helpful to reduce:

  • Chlorofluorocarbons (CFCs) and Hydrochlorofluorocarbons (HCFCS): These are greenhouse gases used mainly in refrigeration systems and in fire suppression systems (alongside halons) that are regulated by the Montreal Protocol due to their contribution to ozone depletion.
  • Nitrogen oxides (NOx): These gases include nitric oxide (NO) and nitrogen dioxide (NO2) and are caused by the combustion of fuels and act as a source of air pollution, contributing to the formation of smog and acid rain.
  • Halocarbons: These carbon-halogen compounds have been used historically as solvents, pesticides, refrigerants, adhesives, and plastics, and have been deemed a direct cause of global warming for their role in the depletion of the stratospheric ozone.

There are many different types of carbon emissions for companies (and governments) to consider, measure, and reduce on the path to decarbonization. But that means there are also many places to start.

National Public Utilities Council is the go-to resource for all things decarbonization in the utilities industry. Learn more.

Click for Comments

Sponsored

Ranked: Emissions per Capita of the Top 30 U.S. Investor-Owned Utilities

Roughly 25% of all GHG emissions come from electricity production. See how the top 30 IOUs rank by emissions per capita.

Published

on

Emissions per Capita of the Top 30 U.S. Investor-Owned Utilities

Approximately 25% of all U.S. greenhouse gas emissions (GHG) come from electricity generation.

Subsequently, this means investor-owned utilities (IOUs) will have a crucial role to play around carbon reduction initiatives. This is particularly true for the top 30 IOUs, where almost 75% of utility customers get their electricity from.

This infographic from the National Public Utilities Council ranks the largest IOUs by emissions per capita. By accounting for the varying customer bases they serve, we get a more accurate look at their green energy practices. Here’s how they line up.

Per Capita Rankings

The emissions per capita rankings for the top 30 investor-owned utilities have large disparities from one another.

Totals range from a high of 25.8 tons of CO2 per customer annually to a low of 0.5 tons.

UtilityEmissions Per Capita (CO2 tons per year)Total Emissions (M)
TransAlta25.816.3
Vistra22.497.0
OGE Energy21.518.2
AES Corporation19.849.9
Southern Company18.077.8
Evergy14.623.6
Alliant Energy14.414.1
DTE Energy14.229.0
Berkshire Hathaway Energy14.057.2
Entergy13.840.5
WEC Energy13.522.2
Ameren12.831.6
Duke Energy12.096.6
Xcel Energy11.943.3
Dominion Energy11.037.8
Emera11.016.6
PNM Resources10.55.6
PPL Corporation10.428.7
American Electric Power9.250.9
Consumers Energy8.716.1
NRG Energy8.229.8
Florida Power and Light8.041.0
Portland General Electric7.66.9
Fortis Inc.6.112.6
Avangrid5.111.6
PSEG3.99.0
Exelon3.834.0
Consolidated Edison1.66.3
Pacific Gas and Electric0.52.6
Next Era Energy Resources01.1

PNM Resources data is from 2019, all other data is as of 2020

Let’s start by looking at the higher scoring IOUs.

TransAlta

TransAlta emits 25.8 tons of CO2 emissions per customer, the largest of any utility on a per capita basis. Altogether, the company’s 630,000 customers emit 16.3 million metric tons. On a recent earnings call, its management discussed clear intent to phase out coal and grow their renewables mix by doubling their renewables fleet. And so far it appears they’ve been making good on their promise, having shut down the Canadian Highvale coal mine recently.

Vistra

Vistra had the highest total emissions at 97 million tons of CO2 per year and is almost exclusively a coal and gas generator. However, the company announced plans for 60% reductions in CO2 emissions by 2030 and is striving to be carbon neutral by 2050. As the highest total emitter, this transition would make a noticeable impact on total utility emissions if successful.

Currently, based on their 4.3 million customers, Vistra sees per capita emissions of 22.4 tons a year. The utility is a key electricity provider for Texas, ad here’s how their electricity mix compares to that of the state as a whole:

Energy SourceVistraState of Texas
Gas63%52%
Coal29%15%
Nuclear6%9%
Renewables1%24%
Oil1%0%

Despite their ambitious green energy pledges, for now only 1% of Vistra’s electricity comes from renewables compared to 24% for Texas, where wind energy is prospering.

Based on those scores, the average customer from some of the highest emitting utility groups emit about the same as a customer from each of the bottom seven, who clearly have greener energy practices. Let’s take a closer look at emissions for some of the bottom scoring entities.

Utilities With The Greenest Energy Practices

Groups with the lowest carbon emission scores are in many ways leaders on the path towards a greener future.

Exelon

Exelon emits only 3.8 tons of CO2 emissions per capita annually and is one of the top clean power generators across the Americas. In the last decade they’ve reduced their GHG emissions by 18 million metric tons, and have recently teamed up with the state of Illinois through the Clean Energy Jobs Act. Through this, Exelon will receive $700 million in subsidies as it phases out coal and gas plants to meet 2030 and 2045 targets.

Consolidated Edison

Consolidated Edison serves nearly 4 million customers with a large chunk coming from New York state. Altogether, they emit 1.6 tons of CO2 emissions per capita from their electricity generation.

The utility group is making notable strides towards a sustainable future by expanding its renewable projects and testing higher capacity limits. In addition, they are often praised for their financial management and carry the title of dividend aristocrat, having increased their dividend for 47 years and counting. In fact, this is the longest out of any utility company in the S&P 500.

A Sustainable Tomorrow

Altogether, utilities will have a pivotal role to play in decarbonization efforts. This is particularly true for the top 30 U.S. IOUs, who serve millions of Americans.

Ultimately, this means a unique moment for utilities is emerging. As the transition toward cleaner energy continues and various groups push to achieve their goals, all eyes will be on utilities to deliver.

The National Public Utilities Council is the go-to resource to learn how utilities can lead in the path towards decarbonization.

Continue Reading

Sponsored

The Road to Decarbonization: How Asphalt is Affecting the Planet

The U.S. alone generates ∼12 million tons of asphalt shingles tear-off waste and installation scrap every year and more than 90% of it is dumped into landfills.

Published

on

Road to Decarbonization - How Asphalt is Affecting the Planet

The Road to Decarbonization: How Asphalt is Affecting the Planet

Asphalt, also known as bitumen, has various applications in the modern economy, with annual demand reaching 110 million tons globally.

Until the 20th century, natural asphalt made from decomposed plants accounted for the majority of asphalt production. Today, most asphalt is refined from crude oil.

This graphic, sponsored by Northstar Clean Technologies, shows how new technologies to reuse and recycle asphalt can help protect the environment.

The Impact of Climate Change

Pollution from vehicles is expected to decline as electric vehicles replace internal combustion engines.

But pollution from asphalt could actually increase in the next decades because of rising temperatures in some parts of the Earth. When subjected to extreme temperatures, asphalt releases harmful greenhouse gases (GHG) into the atmosphere.

Emissions from Road Construction (Source) CO2 equivalent (%)
Asphalt 28%
Concrete18%
Excavators and Haulers16%
Trucks13%
Crushing Plant 10%
Galvanized Steel 6%
Reinforced Steel6%
Plastic Piping 2%
Geotextile1%

Asphalt paved surfaces and roofs make up approximately 45% and 20% of surfaces in U.S. cities, respectively. Furthermore, 75% of single-family detached homes in Canada and the U.S. have asphalt shingles on their roofs.

Reducing the Environmental Impact of Asphalt

Similar to roads, asphalt shingles have oil as the primary component, which is especially harmful to the environment.

Shingles do not decompose or biodegrade. The U.S. alone generates ∼12 million tons of asphalt shingles tear-off waste and installation scrap every year and more than 90% of it is dumped into landfills, the equivalent of 20 million barrels of oil.

But most of it can be reused, rather than taking up valuable landfill space.

Using technology, the primary components in shingles can be repurposed into liquid asphalt, aggregate, and fiber, for use in road construction, embankments, and new shingles.

Providing the construction industry with clean, sustainable processing solutions is also a big business opportunity. Canada alone is a $1.3 billion market for recovering and reprocessing shingles.

Northstar Clean Technologies is the only public company that repurposes 99% of asphalt shingles components that otherwise go to landfills.

Continue Reading

Subscribe

Popular