Infographic: Measuring the Level of Competition for Valuable Minerals
Connect with us

Energy

Measuring the Level of Competition for Valuable Minerals

Published

on

Resource Monopolies: Measuring the Level of Competition for Valuable Minerals

Measuring Competition for Valuable Minerals

The Chart of the Week is a weekly Visual Capitalist feature on Fridays.

Everybody loves a little competition.

It levels the playing field and ensures prices and products are kept affordable and available. But how do you measure and track the competitiveness of specific sectors?

The Herfindahl-Hirschman Index (HHI) is a commonly accepted measurement of market concentration, and in today’s case, we use it to show which mineral sectors have healthy competition between countries, as well as the sectors that are more monopolistic.

What is the Herfindahl-Hirschman Index?

The HHI is calculated by squaring the market share of each competitor and then summing up the resulting numbers. It can range from zero to 10,000.

The closer a market is to a monopoly, the higher the market’s concentration, and the lower its competition. If there were only one company in an industry, that company would have a 100% share of the market, and the HHI would equal 10,000, demonstrating a monopoly.

Conversely, if there were thousands of firms competing, the HHI would be near zero, indicating almost perfect competition.

  • HHI below 1,500: a competitive marketplace
  • HHI between 1,500 – 2,500: a moderately concentrated marketplace
  • HHI of 2,500 or greater: a highly concentrated marketplace

Interestingly, the same technique is also used by the U.S. Department of Justice to look at market competition and potential anti-trust violators, as well.

Global Metal Production

Today’s chart uses data from the World Mining Congress to look at the competition for global minerals between countries. The HHI scores show the minerals most and least exposed to competition, while uncovering opportunities for countries looking to bolster their own mineral production.

Here are 33 minerals ranked, going from highest score (most monopolistic) to lowest (least monopolistic):

RankMineralHHI ScoreType of Mineral
#1Niobium (Nb2O5)8,413Iron and Ferro-Alloy Metals
#2REE (Rare Earth Elements)7,219Non-Ferrous Metals
#3Oil Sands6,871Mineral Fuels
#4Tungsten (W)6,828Iron and Ferro-Alloy Metals
#5Platinum (Pt)5,383Precious Metals
#6Graphite4,990Industrial Minerals
#7Asbestos3,738Industrial Minerals
#8Vanadium (V)3,573Iron and Ferro-Alloy Metals
#9Coking Coal3,423Mineral Fuels
#10Cobalt (Co)3,184Iron and Ferro-Alloy Metals
#11Palladium (Pd)3,163Precious Metals
#12Aluminum (Al)3,078Non-Ferrous Metals
#13Chromium (Cr2O3)2,942Iron and Ferro-Alloy Metals
#14Molybdenum (Mo)2,812Iron and Ferro-Alloy Metals
#15Boron (B)2,749Industrial Minerals
#16Lithium (Li2O)2,749Non-Ferrous Metals
#17Steam Coal2,639Mineral Fuels
#18Lead (Pb)2,505Non-Ferrous Metals
#19Uranium (U308)2,233Mineral Fuels
#20Tin (Sn)2,036Non-Ferrous Metals
#21Iron (Fe)2,015Iron and Ferro-Alloy Metals
#22Diamond1,904Gemstones
#23Zinc (Zn)1,687Non-Ferrous Metals
#24Manganese (Mn)1,627Iron and Ferro-Alloy Metals
#25Potash1,565Industrial Minerals
#26Copper (Cu)1,136Non-Ferrous Metals
#27Titanium (TIO2)1,120Iron and Ferro-Alloy Metals
#28Silver (Ag)1,015Precious Metals
#29Salt (NaCl)982Industrial Minerals
#30Nickel (Ni)949Iron and Ferro-Alloy Metals
#31Natural Gas884Mineral Fuels
#32Petroleum686Mineral Fuels
#33Gold (Au)557Precious Metals

The data here makes it clear that mineral production is not uniformly distributed throughout the world, giving some countries huge advantages while revealing potential supply problems down the road.

Renewables in the Spotlight

While commodities like gold and oil have robust levels of competition around the world, the renewable energy industry relies on more obscure raw materials to make solar, wind, and EVs work.

Rare earth elements (REE) rank #2 on the list with a HHI score of 7,219, while battery minerals such as graphite (#6), vanadium (#8), cobalt (#10), and lithium (#16) also appear high on the list as well.

According to a recent study, the production of rare earth elements is an area of particular concern. Used in everything from electric motors to wind turbines, rare earth demand will need to increase by twelve times by 2050 to reach emissions targets set by the Paris Agreement.

The only problem is that China currently controls 84% of global production, which increases the odds of bottlenecks and scarcity as demand rises. This ultimately creates an interesting scenario, where a sustainable future will be at the mercy of a few a producing nations.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the Range of Electric Cars vs. Gas-Powered Cars

With range anxiety being a barrier to EV adoption, how far can an electric car go on one charge, and how do EV ranges compare with gas cars?

Published

on

The Range of Electric Cars vs. Gas-Powered Cars

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

EV adoption has grown rapidly in recent years, but many prospective buyers still have doubts about electric car ranges.

In fact, 33% of new car buyers chose range anxiety—the concern about how far an EV can drive on a full charge—as their top inhibitor to purchasing electric cars in a survey conducted by EY.

So, how far can the average electric car go on one charge, and how does that compare with the typical range of gas-powered cars?

The Rise in EV Ranges

Thanks to improvements in battery technology, the average range of electric cars has more than doubled over the last decade, according to data from the International Energy Agency (IEA).

YearAvg. EV RangeMaximum EV Range
201079 miles (127 km)N/A
201186 miles (138 km)94 miles (151 km)
201299 miles (159 km)265 miles (426 km)
2013117 miles (188 km)265 miles (426 km)
2014130 miles (209 km)265 miles (426 km)
2015131 miles (211 km)270 miles (435 km)
2016145 miles (233 km)315 miles (507 km)
2017151 miles (243 km)335 miles (539 km)
2018189 miles (304 km)335 miles (539 km)
2019209 miles (336 km)370 miles (595 km)
2020210 miles (338 km)402 miles (647 km)
2021217 miles (349 km)520 miles* (837 km)

*Max range for EVs offered in the United States.
Source: IEA, U.S. DOE

As of 2021, the average battery-powered EV could travel 217 miles (349 km) on a single charge. It represents a 44% increase from 151 miles (243 km) in 2017 and a 152% increase relative to a decade ago.

Despite the steady growth, EVs still fall short when compared to gas-powered cars. For example, in 2021, the median gas car range (on one full tank) in the U.S. was around 413 miles (664 km)—nearly double what the average EV would cover.

As automakers roll out new models, electric car ranges are likely to continue increasing and could soon match those of their gas-powered counterparts. It’s important to note that EV ranges can change depending on external conditions.

What Affects EV Ranges?

In theory, EV ranges depend on battery capacity and motor efficiency, but real-world results can vary based on several factors:

  • Weather: At temperatures below 20℉ (-6.7℃), EVs can lose around 12% of their range, rising to 41% if heating is turned on inside the vehicle.
  • Operating Conditions: Thanks to regenerative braking, EVs may extend their maximum range during city driving.
  • Speed: When driving at high speeds, EV motors spin faster at a less efficient rate. This may result in range loss.

On the contrary, when driven at optimal temperatures of about 70℉ (21.5℃), EVs can exceed their rated range, according to an analysis by Geotab.

The 10 Longest-Range Electric Cars in America

Here are the 10 longest-range electric cars available in the U.S. as of 2022, based on Environmental Protection Agency (EPA) range estimates:

CarRange On One Full ChargeEstimated Base Price
Lucid Air520 miles (837 km)$170,500
Tesla Model S405 miles (652 km)$106,190
Tesla Model 3358 miles (576 km)$59,440
Mercedes EQS350 miles (563 km)$103,360
Tesla Model X348 miles (560 km)$122,440
Tesla Model Y330 miles (531 km)$67,440
Hummer EV329 miles (529 km)$110,295
BMW iX324 miles (521 km)$84,195
Ford F-150 Lightning320 miles (515 km)$74,169
Rivian R1S316 miles (509 km)$70,000

Source: Car and Driver

The top-spec Lucid Air offers the highest range of any EV with a price tag of $170,500, followed by the Tesla Model S. But the Tesla Model 3 offers the most bang for your buck if range and price are the only two factors in consideration.

Continue Reading

Energy

Green Steel: Decarbonising with Hydrogen-Fueled Production

How will high emission industries respond to climate change? We highlight industrial emissions and hydrogen’s role in green steel production.

Published

on

This infographic highlights industrial emissions and hydrogen's role in green steel production.
The following content is sponsored by AFRY
This infographic highlights industrial emissions and hydrogen's role in green steel production.

Green Steel: Decarbonising with Hydrogen-Fueled Production

As the fight against climate change ramps up worldwide, the need for industries and economies to respond is immediate.

Of course, different sectors contribute different amounts of greenhouse gas (GHG) emissions, and face different paths to decarbonisation as a result. One massive player? Steel and iron manufacturing, where energy-related emissions account for roughly 6.1% of global emissions.

The following infographic by AFRY highlights the need for steel manufacturing to evolve and decarbonise, and how hydrogen can play a vital role in the “green” steel revolution.

The Modern Steel Production Landscape

Globally, crude steel production totalled 1,951 million tonnes (Mt) in 2021.

This production is spread all over the world, including India, Japan, and the U.S., with the vast majority (1,033 million tonnes) concentrated in China.

But despite being produced in many different places globally, only two main methods of steel production have been honed and utilised over time—electric arc furnace (EAF) and blast furnace basic oxygen furnace (BF-BOF) production.

Both methods traditionally use fossil fuels, and in 2019 contributed 3.6 Gt of carbon dioxide (CO2) emissions:

Steel Production MethodMaterials UtilisedCO2 Emissions (2019)
EAFScrap0.5 Gt
BF-BOFScrap, iron ore, coke3.1 Gt

That’s why one of the main ways the steel industry can decarbonise is through the replacement of fossil fuels.

Hydrogen’s Role in Green Steel Production

Of course, one of the biggest challenges facing the industry is how to decarbonise and produce “green” steel in an extremely competitive market.

As a globally-traded good with fine cost margins, steel production has been associated with major geopolitical issues, including trade disputes and tariffs. But because of climate change, there is also a sudden and massive demand for carbon-friendly production.

And that’s where hydrogen plays a key role. Steel traditionally made in a blast furnace uses coke—a high-carbon fuel made by heating coal without air—as a fuel source to heat iron ore pellets and liquify the pure iron component. This expels a lot of emissions in order to get the iron hot enough to melt (1,200 °C) and be mixed with scrap and made into steel.

The green steel method instead uses hydrogen to reduce the iron pellets into sponge iron, metallic iron that can then be processed to form steel. This process is also done at high temperature but below the melting point of iron (800 – 1,200 °C), saving energy costs.

And by introducing non-fossil fuels to create iron pellets and renewable electricity to turn the sponge iron and scrap into steel, fossil fuels can be removed from the process, significantly reducing emissions as a result.

The Future of Green Steel Production

Given the massive global demand for steel, the need for hydrogen and renewable energy required for green steel production is just as significant.

According to AFRY and the International Renewable Energy Agency, meeting global steel production in 2021 using the green steel method would require 97.6 million tonnes of hydrogen.

And for a truly carbon-free transition to green steel, the energy industry will also need to focus on green hydrogen production using electrolysis. Unlike methods which burn natural gas to release hydrogen, electrolysis entails the splitting of water (H2O) into oxygen and hydrogen using renewable energy sources.

Full green steel production would therefore use green hydrogen, electrolysers running on renewables, and additional renewables for all parts of the supply chain:

Steel Production SourceAnnual Steel ProductionGreen Hydrogen RequiredElectrolyser Capacity RequiredTotal Renewables Capacity Required
Base Reference1 Mt50 kT0.56 GW0.7 GW
U.S.85.8 Mt4.3 Mt48 GW60 GW
Europe103 Mt5.2 Mt58 GW72 GW
China1032.8 Mt51.6 Mt581 GW726 GW
Global1951 Mt97.6 Mt1,097 GW1,371 GW

Currently, green hydrogen production costs are higher than traditional fossil fuel methods, and are dependent on the levelised costs of renewable energy sources. This means they vary by region, but also that they will reduce as production capacity and subsidies for renewables and green hydrogen increase.

And many major European steel manufacturers are already leading the way with pilot and large scale facilities for green steel production. Germany alone has at least seven projects in the works, including by ArcelorMittal and ThyssenKrupp, two of the world’s 10 largest steelmakers by revenue.

AFRY is a thought leadership firm that provides companies with advisory services and sustainable solutions, in their efforts to fight climate change and lead them towards a greater future.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular