Is Driving a Tesla Better for the Environment? It Depends...
Connect with us

Energy

Is Driving a Tesla Better for the Environment? It Depends…

Published

on

Is Driving a Tesla Better for the Environment? It Depends...

Are Teslas and other electric vehicles perfect for the environment?

The answer is “no”, since nothing can be perfect. Electric vehicles are still a source of GHG emissions as a result of the manufacturing and raw material extraction processes. Further, and more importantly, lifetime emissions for electric vehicles also depend on the sources of fuel used to power the local grid.

So Is Driving a Tesla Better for the Environment?

Today’s infographic, which looks at the well-to-wheels impact of electric and gas vehicles, was created in association with Delbrook Capital, a financial services company that has launched the CO2 Master Solutions Fund.

Together we explore the latest data on the lifetime emissions of gasoline and electric vehicles, and how they compare depending on the state you live in:

Is driving a Tesla better for the environment than using a comparably sized gas-powered vehicle? In the majority of places, the answer is “yes”.

However, the true environmental impact depends greatly on the specific power sources that the local grid uses to generate electricity.

The Power Mix

According to a study done by the Union of Concerned Scientists, the average new gasoline vehicle generates the equivalent of 29 MPG of emissions over its lifetime. The study found that the average electric vehicle has emission equivalents in a range between 35 MPG to 135 MPG depending on the local power grid of the state it is driven in.

Electric cars driven in the Pacific Northwest states, as an example, have the emissions of an equivalent 94 MPG gas-powered car. This is miles better than a new Honda Fit (36 MPG) or even hybrids such as the Prius (50 MPG) or Honda Accord hybrid (47 MPG). This is because 52% of all power in the region comes from hydro.

In Colorado, about 70% of all electricity is coal-fired. This means that the electric car has the equivalent emissions of a gas-powered Honda Fit with 35 MPG. In Florida, natural gas has replaced coal usage, and now accounts for two-thirds of all electricity generated. Powering an EV on Florida’s grid for an estimated 51 MPG equivalent is better than driving a hybrid such as a Prius (50 MPG) or a Honda Accord Hybrid (47 MPG).

The Future of Emissions

Today, the study by the Union of Concerned Scientists concludes that 66% of Americans definitely would generate less emissions by driving electric vehicles based on the compositions of their local power grids.

In the very near future, plugging in will be better in 100% of places in America. Here’s why:

  • Battery technology will continue to get better. More efficiency means lighter and better cars.
  • Coal is falling. It’s gone from 44% of all U.S. power generation in 2009 to 33% in 2015. It’s forecasted to fall to 22% by 2020.
  • Many states also have committed to specific targets for green energy as a portion of their energy mix. More renewables for the grid means less emissions.

For investors, these changes will create many opportunities for investors.

As the electric car era is ushered in, some experts are predicting that entire power grids will need to be re-wired to accommodate. Automobile dealer networks will be profoundly affected.

Car part manufacturers will also have to adapt. How many pieces are in a typical gas-powered vehicle? According to energy expert Gianni Kovacevic there are about 100.

Parts in a gas-powered car

In an electric vehicle, which only needs about 20 components, many of these parts such as pistons and spark plugs will become antiquated.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the World’s Largest Hydroelectric Dams

Hydroelectric dams generate 40% of the world’s renewable energy, the largest of any type. View this infographic to learn more.

Published

on

Visualizing the World’s Largest Hydroelectric Dams

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Did you know that hydroelectricity is the world’s biggest source of renewable energy? According to recent figures from the International Renewable Energy Agency (IRENA), it represents 40% of total capacity, ahead of solar (28%) and wind (27%).

This type of energy is generated by hydroelectric power stations, which are essentially large dams that use the water flow to spin a turbine. They can also serve secondary functions such as flow monitoring and flood control.

To help you learn more about hydropower, we’ve visualized the five largest hydroelectric dams in the world, ranked by their maximum output.

Overview of the Data

The following table lists key information about the five dams shown in this graphic, as of 2021. Installed capacity is the maximum amount of power that a plant can generate under full load.

CountryDamRiverInstalled Capacity
(gigawatts)
Dimensions
(meters)
🇨🇳 ChinaThree Gorges DamYangtze River22.5181 x 2,335
🇧🇷 Brazil / 🇵🇾 ParaguayItaipu DamParana River14.0196 x 7,919
🇨🇳 ChinaXiluodu DamJinsha River13.9286 x 700
🇧🇷 BrazilBelo Monte DamXingu River11.290 X 3,545
🇻🇪 VenezuelaGuri DamCaroni River10.2162 x 7,426

At the top of the list is China’s Three Gorges Dam, which opened in 2003. It has an installed capacity of 22.5 gigawatts (GW), which is close to double the second-place Itaipu Dam.

In terms of annual output, the Itaipu Dam actually produces about the same amount of electricity. This is because the Parana River has a low seasonal variance, meaning the flow rate changes very little throughout the year. On the other hand, the Yangtze River has a significant drop in flow for several months of the year.

For a point of comparison, here is the installed capacity of the world’s three largest solar power plants, also as of 2021:

  • Bhadla Solar Park, India: 2.2 GW
  • Hainan Solar Park, China: 2.2 GW
  • Pavagada Solar Park, India: 2.1 GW

Compared to our largest dams, solar plants have a much lower installed capacity. However, in terms of cost (cents per kilowatt-hour), the two are actually quite even.

Closer Look: Three Gorges Dam

The Three Gorges Dam is an engineering marvel, costing over $32 billion to construct. To wrap your head around its massive scale, consider the following facts:

  • The Three Gorges Reservoir (which feeds the dam) contains 39 trillion kg of water (42 billion tons)
  • In terms of area, the reservoir spans 400 square miles (1,045 square km)
  • The mass of this reservoir is large enough to slow the Earth’s rotation by 0.06 microseconds

Of course, any man-made structure this large is bound to have a profound impact on the environment. In a 2010 study, it was found that the dam has triggered over 3,000 earthquakes and landslides since 2003.

The Consequences of Hydroelectric Dams

While hydropower can be cost-effective, there are some legitimate concerns about its long-term sustainability.

For starters, hydroelectric dams require large upstream reservoirs to ensure a consistent supply of water. Flooding new areas of land can disrupt wildlife, degrade water quality, and even cause natural disasters like earthquakes.

Dams can also disrupt the natural flow of rivers. Other studies have found that millions of people living downstream from large dams suffer from food insecurity and flooding.

Whereas the benefits have generally been delivered to urban centers or industrial-scale agricultural developments, river-dependent populations located downstream of dams have experienced a difficult upheaval of their livelihoods.
– Richter, B.D. et al. (2010)

Perhaps the greatest risk to hydropower is climate change itself. For example, due to the rising frequency of droughts, hydroelectric dams in places like California are becoming significantly less economical.

Continue Reading

Energy

What are the Benefits of Fusion Energy?

One of the most promising technologies, fusion, has attracted the attention of governments and private companies.

Published

on

General-Fusion_Benefits-of-Fusion
The following content is sponsored by General Fusion

What are The Benefits of Fusion Energy?

As the world moves towards net-zero emissions, sustainable and affordable power sources are urgently needed by humanity.

One of the most promising technologies, fusion, has attracted the attention of governments and private companies like Chevron and Google. In fact, Bloomberg Intelligence has estimated that the fusion market may eventually be valued at $40 trillion.

In this infographic sponsored by General Fusion, we discuss the benefits of fusion as a clean energy source.

The Ultimate Source of Energy 

Fusion powers the sun and the stars, where the immense force of gravity compresses and heats hydrogen plasma, fusing it into helium and releasing enormous amounts of energy. Here on Earth, scientists use isotopes of hydrogen—deuterium and tritium—to power fusion plants.

Fusion energy offers a wide range of benefits, such as:

1. Ample resources:

Both atoms necessary for nuclear fusion are abundant on Earth: deuterium is found in seawater, while tritium can be produced from lithium.

2. Sustainable

Energy-dense generation like fusion minimizes land use needs and can replace aging infrastructure like old power plants. 

3. Clean

There are no CO₂ or other harmful atmospheric emissions from the fusion process.

4. Scalable

With limited expected regulatory burden or export controls, fusion scales effectively with a small land footprint that can be located close to cities.

5. Safety advantage

Unlike atomic fission, fusion does not create any long-lived radioactive nuclear waste. Its radiation profile is similar to widely used medical and industrial applications like cyclotrons for cancer treatment.

6. Reliable

Fusion energy is on-demand and independent from the weather, making it an excellent option in a dependable portfolio for power generation.

Commercializing Fusion Energy

More than 130 countries have now set or are considering a target of reducing emissions to net-zero by 2050. Meanwhile, global energy demand is expected to increase by 47% in the next 30 years.

While renewables like wind and solar are intermittent and need a baseload source of clean energy to supplement them, fusion, when commercially implemented, could deliver clean, abundant, reliable, and cost-competitive energy. 

General Fusion seeks to transform the world’s energy supply with the most practical path to commercial fusion energy. Click here to learn more.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular