Connect with us

Green

Visualizing the Human Impact on the Earth’s Surface

Published

on

Click here to view the full version of this graphic

Visualizing the Human Impact on the Earth’s Surface

Visualizing the Human Impact on the Earth’s Surface

View the high resolution version of this map by clicking here.

There is little doubt that human activity has impacted the Earth, but to what extent?

As it turns out, nearly 95% of the Earth’s surface shows some form of human modification, with 85% bearing evidence of multiple forms of human impact.

This map by data scientist Hannah Ker outlines the extent of humanity’s modification on terrestrial land ecosystems.

Measuring the Human Impact

This map relies on the Global Human Modification of Terrestrial Systems data set, which tracks the physical extent of 13 anthropogenic stressors across five categories.

  1. Human settlement: population density, built‐up areas
  2. Agriculture: cropland, livestock
  3. Transportation: major roads, minor roads, two tracks, railroads
  4. Mining and energy production: mining, oil wells, wind turbines
  5. Electrical infrastructure: powerlines, nighttime lights

Researchers compiled all these stress factors and scaled their impact from 0 to 1. Then, in order to map the impacts spatially, the surface of land was organized into cells of 1 kilometer in length creating “edges” of varying impact.

These impacts are further organized by biomes—distinct biological communities that have formed in response to a shared physical climate.

Digging into the Data

Only 5% of the world’s lands are unaffected by humans, which amounts to nearly 7 million km² of the Earth’s land, and 44% (59 million km²) is categorized as low modification.

The remainder of land has a moderate to high degree of modification: with 34% categorized as moderate (46 million km²), 13% categorized as high (17 million km²), and 4% categorized as very high modification (5.5 million km²). This latter category is the most visible on the map, with portions of China, India, and Italy serving as focal points.

Below is a look at how Earth’s various biomes fare under this ranking system:

Visualizing the Human Impact on the Earth’s Surface

Out of the 14 biomes studied, the least modified biomes are tundra, boreal forests, deserts, temperate coniferous forests, and montane grasslands. Tropical dry broadleaf forests, temperate broadleaf forests, Mediterranean forests, mangroves, and temperate grasslands are the most modified biomes.

Dense human settlements, agricultural land uses, networks of infrastructure, and industrial activities dominate the more highly modified biomes. These lands are commonly subject to five or more human stressors simultaneously, threatening naturally-occurring ecosystem services.

What are Ecosystem Services?

An ecosystem service is any positive benefit that wildlife or ecosystems provide to people, and they can be sorted into four categories:

  1. Provisioning Services: This is the primary benefit of nature. Humans derive their food, water, and resources from nature.
  2. Regulating: Plants clean air and filter water, tree roots help to keep soil in place to prevent erosion, bees pollinate flowers, and bacterial colonies help to decompose waste.
  3. Cultural Services: Humans have long interacted with the “wild” and it in turn has influenced our social, intellectual, and cultural development. However, the built environment of a city or town separates man from nature and ancient patterns of life. Ecosystems have long served as inspiration for music, art, architecture, and recreation.
  4. Supporting Services: Ecosystems contain the fundamental natural processes that make life possible such as photosynthesis, nutrient cycling, soil creation, and the water cycle. These natural processes bring the Earth to life. Without these supporting services, provisional, regulating, and cultural services wouldn’t exist.

A Delicate Balance

With each encroachment upon habitat, the potential increases for humans to inadvertently upset the careful balance of ecosystem services that have nourished the processes of life on Earth.

As we become more aware of the human impact on the plant, we can make smarter decisions about how our society and economies function—ultimately ensuring that the same ecosystem services are there for future generations.

Click for Comments

Environment

How Carbon Dioxide Removal is Critical to a Net-Zero Future

Here’s how carbon dioxide removal methods could help us meet net-zero targets and and stabilize the climate.

Published

on

Teaser image for a post on the importance of carbon dioxide removal in the push for a net-zero future.

Published

on

The following content is sponsored by Carbon Streaming

How Carbon Dioxide Removal is Critical to a Net-Zero Future

Meeting the Paris Agreement temperature goals and avoiding the worst consequences of a warming world requires first and foremost emission reductions, but also the ongoing direct removal of CO2 from the atmosphere.

We’ve partnered with Carbon Streaming to take a deep look at carbon dioxide removal methods, and the role that they could play in a net-zero future. 

What is Carbon Dioxide Removal?

Carbon Dioxide Removal, or CDR, is the direct removal of CO2 from the atmosphere and its durable storage in geological, terrestrial, or ocean reservoirs, or in products. 

And according to the UN Environment Programme, all least-cost pathways to net zero that are consistent with the Paris Agreement have some role for CDR. In a 1.5°C scenario, in addition to emissions reductions, CDR will need to pull an estimated 3.8 GtCO2e p.a. out of the atmosphere by 2035 and 9.2 GtCO2e p.a. by 2050.

The ‘net’ in net zero is an important quantifier here, because there will be some sectors that can’t decarbonize, especially in the near term. This includes things like shipping and concrete production, where there are limited commercially viable alternatives to fossil fuels.

Not All CDR is Created Equal

There are a whole host of proposed ways for removing CO2 from the atmosphere at scale, which can be divided into land-based and novel methods, and each with their own pros and cons. 

Land-based methods, like afforestation and reforestation and soil carbon sequestration, tend to be the cheapest options, but don’t tend to store the carbon for very long—just decades to centuries. 

In fact, afforestation and reforestation—basically planting lots of trees—is already being done around the world and in 2020, was responsible for removing around 2 GtCO2e. And while it is tempting to think that we can plant our way out of climate change, think that the U.S. would need to plant a forest the size of New Mexico every year to cancel out their emissions.

On the other hand, novel methods like enhanced weathering and direct air carbon capture and storage, because they store carbon in minerals and geological reservoirs, can keep carbon sequestered for tens of thousand years or longer. The trade off is that these methods can be very expensive—between $100-500 and north of $800 per metric ton

CDR Has a Critical Role to Play

In the end, there is no silver bullet, and given that 2023 was the hottest year on record—1.45°C above pre-industrial levels—it’s likely that many different CDR methods will end up playing a part, depending on local circumstances. 

And not just in the drive to net zero, but also in the years after 2050, as we begin to stabilize global average temperatures and gradually return them to pre-industrial norms. 

Carbon Streaming uses carbon credit streams to finance CDR projects, such as reforestation and biochar, to accelerate a net-zero future.

Visual Capitalist Logo

Learn more about Carbon Streaming’s CDR projects.

Click for Comments

You may also like

Subscribe

Continue Reading
MSCI Climate Metrics Paper - A simple toolkit for climate investing

Subscribe

Popular