China's Growth in Wind Power Stays Parabolic [Chart] - Visual Capitalist
Connect with us

Green

China’s Growth in Wind Power Stays Parabolic [Chart]

Published

on

China's Growth in Wind Power Stays Parabolic [Chart]

China’s Growth in Wind Power Stays Parabolic [Chart]

The Chart of the Week is a weekly feature in Visual Capitalist on Fridays.

It was only five years ago that China passed the United States in cumulative wind power capacity. Since then, the country hasn’t looked back and growth in wind power generation has continued exponentially.

The most recent numbers show that China now has more total wind capacity than the United States, India, and Spain combined. Even more impressive: for the year of 2014, China added 23,196 MW of new installed capacity, which is close to double that of the European Union’s growth in capacity over the same year (11,829 MW).

Why is China so bullish on wind? The answer is that because China is a quickly growing country, more power infrastructure has to be built each year to meet consumption growth. Meanwhile, for developed countries in North America and Europe, tinkering with the power grid happens on a smaller scale as adequate infrastructure already exists.

China’s power mix was not optimal to start with. In 2012, it was estimated that two-thirds of the country’s electricity was generated by coal. Coal will still be a big part of the mix moving forward, but the country is trying to diversify into nuclear as well as wind energy. That’s why wind is now the third most important source of electricity in the nation behind coal and hydro.

The growth in wind is not expected to stop soon. The Gansu Wind Farm Project is currently under construction and highlights China’s thirst for additional wind energy. When completed and operational, it is expected to become the world’s biggest collective windfarm.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing China’s Dominance in Clean Energy Metals

Despite being the world’s biggest carbon emitter, China is also a key producer of most of the critical minerals for the green revolution.

Published

on

Visualizing China’s Dominance in Clean Energy Metals

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Renewable sources of energy are expected to replace fossil fuels over the coming decades, and this large-scale transition will have a downstream effect on the demand of raw materials. More green energy means more wind turbines, solar panels, and batteries needed, and more clean energy metals necessary to build these technologies.

This visualization, based on data from the International Energy Agency (IEA), illustrates where the extraction and processing of key metals for the green revolution take place.

It shows that despite being the world’s biggest carbon polluter, China is also the largest producer of most of the world’s critical minerals for the green revolution.

Where Clean Energy Metals are Produced

China produces 60% of all rare earth elements used as components in high technology devices, including smartphones and computers.

The country also has a 13% share of the lithium production market, which is still dominated by Australia (52%) and Chile (22%). The highly reactive element is key to producing rechargeable batteries for mobile phones, laptops, and electric vehicles.

China's ShareExtractionProcessing
Copper 8%40%
Nickel 5%35%
Cobalt 1.5%65%
Rare Earths 60%87%
Lithium13%58%

But even more than extraction, China is the dominant economy when it comes to processing operations. The country’s share of refining is around 35% for nickel, 58% for lithium, 65% for cobalt, and 87% for rare earth elements.

Despite being the largest economy in the world, the U.S. does not appear among the largest producers of any of the metals listed. To shorten the gap, the Biden administration recently launched an executive order to review the American strategy for critical and strategic materials.

It’s also worth noting that Russia also does not appear among the top producers when it comes to clean energy metals, despite being one of the world’s leading producers of minerals like copper, iron, and palladium.

Low Regulation in the Clean Metal Supply Chain

While China leads all countries in terms of cobalt processing, the metal itself is primarily extracted in the Democratic Republic of Congo (DRC). Still, Chinese interests own 15 of the 17 industrial cobalt operations in the DRC, according to a data analysis by The New York Times and Benchmark Mineral Intelligence.

Unfortunately, the DRC’s cobalt production has been criticized due to reports of corruption and lack of regulation.

Part of the Congolese cobalt comes from artisanal mines with low regulation. Of the 255,000 Congolese artisanal miners, an estimated 40,000 are children, some as young as six years old.

The Rise of Clean Energy Metals

The necessary shift from fossil fuels to renewable energy opens up interesting questions about how geopolitics, and these supply chains, will be affected.

In the race to secure raw materials needed for the green revolution, new world powers could emerge as demand for clean energy metals grows.

For now, China has the lead.

Continue Reading

Misc

Animated Map: Visualizing Earth’s Seasons

This map visualizes Earth’s seasons, showing how our planet’s Arctic sea ice and vegetation changes throughout the year.

Published

on

Animated Map: Visualizing Earth’s Seasons

Why does Earth have seasons?

Many people think the seasons are dictated by Earth’s proximity to the Sun, but this isn’t the case. It’s the Earth’s tilt, not its closeness to the Sun, that influences our seasons.

This animated map by Eleanor Lutz visualizes Earth’s seasons, showing how the temperature changes impact ice levels in the Arctic as well as vegetation more broadly. It also highlights the cloud cover and sunlight each hemisphere receives throughout the year, with each frame in the animation representing a month of time.

Why is Earth Tilted?

Unlike some of the planets that sit completely upright and rotate perpendicularly, Earth rotates on a 23.5-degree axis.

But why? A commonly accepted theory among the scientific community is the giant impact hypothesis. According to this theory, a celestial object called Theia collided with Earth many years ago, when the planet was still forming. This collision not only knocked Earth into its tilted position—some believe that the dust and debris from this impact ended up forming our moon.

Ever since, our planet has been rotating with a slight tilt (which itself is not fixed, as it “wobbles” in cycles), giving us our varying seasons throughout the year.

How Earth’s Tilt Influences our Seasons

As our planet orbits the Sun, it’s always leaning in the same direction. Because of its tilt, the different hemispheres receive varying amounts of sunlight at different times of the year.

In December, Earth is technically closer to the Sun than it is in June or July. However, because the Northern Hemisphere is tilted away from the Sun during December, that part of the planet experiences winter during that time.

Earth's Seasonal Climates

The graphic above by the Smithsonian Science Education Center (SSEC) visualizes Earth’s orbit throughout the year, showing when each hemisphere receives the most direct sunlight (and thus, experiences summer).

The Climate Change Impact

While our seasons have always varied, it’s worth noting that climate change has impacted our seasons, and changed how much Arctic ice we lose each summer.

In the past, millions of miles of ice remained frozen throughout the summer months. In the 1980s, there were 3.8 million square miles of ice in July—that’s roughly the same size as Australia.

Over the years, Arctic ice cover has steadily declined. In July 2020, the ice cover was only 2.8 million square miles—a million less than the amount four decades ago.

Some scientists are predicting that we could lose our summer sea ice entirely by 2035, which would have a devastating impact on the Artic’s wildlife and the indigenous people who live there.

Continue Reading

Subscribe

Popular