Connect with us

Energy

The Alternative Energy Sources of the Future

Published

on

The Alternative Energy Sources of the Future

Image courtesy of: Futurism

The Alternative Energy Sources of the Future

Despite the hype around the progress of renewable energy, many people don’t realize that solar and wind have only made a tiny dent in the energy mix thus far. The good news is that costs are coming down and many people are starting to adopt green technologies, but there is still a mountain to climb if we want to truly get off of fossil fuels on a large scale.

To accomplish this, we’re going to have to think outside the box to come up with new ways to tackle the energy challenge. Luckily, the folks at Futurism have put ten of the most promising alternative energy sources of the future in a handy infographic. Some of these may be long shots, but some may also play a crucial role in the energy mix of the future.

Space-based solar
Most solar energy doesn’t actually make it into the Earth’s atmosphere, so space-based solar power makes a lot of sense. The challenges are the cost in getting a satellite to orbit, as well as the conversion of electricity into microwaves that can be beamed down to the planet’s surface.

Human power
There’s over seven billion people walking around the Earth each day, so why not generate power from the movement of people? Many experts believe that we can harness this energy, and that we could use it to power our devices.

Tidal power
Five countries around the world are starting to operate viable wave power farm operations, but the potential is far higher: the U.S. coastline alone has a wave energy potential of about 252 billion KWh per year.

Hydrogen power
Hydrogen is a clean and potent source of energy, and best of all – it accounts for 74% of the mass of the entire universe. The only problem is that hydrogen atoms tend to only be found in combinations with oxygen, carbon, and nitrogen atoms. Removing this bond takes energy, which ends up being counter-productive. As a result, many people around the world are working on making these processes more economic.

Magma power
The center of the Earth is very hot, so why not try and get closer to it to tap into some geothermal heat? People in Iceland are already doing this with red-hot magma after accidentally striking a pocket of it during a 2008 drilling project.

Nuclear waste
Only 5% of uranium atoms are used in a traditional fission reaction. The rest end up in the pile of nuclear waste, which sits in storage for thousands of years. Researchers and companies are trying to tap into these leftovers for a viable and economic energy solution.

Embeddable solar power
What if every window could be easily turned into a solar panel? Solar window technology turns any window or sheet of glass into a photovoltaic solar cell that harvests the part of the light spectrum that eyes can’t see.

Algae power
Algae grows practically anywhere, and it turns out these tiny plants are a surprising source of energy-rich oils. Up to 9,000 gallons of biofuel could be “grown” per acre, making it one of many potential energy sources of the future.

Flying wind power
Winds are much more powerful and strong at higher elevations. If wind farms could be autonomous and flying, they could go to where the winds are strongest and deliver double the energy of similarly sized tower-mounted turbines.

Fusion power
Fusion has been the dream for some time – but scientists are making baby steps to achieving the power process that is harnessed in nature by our own sun. The ITER (International Thermonuclear Experimental Reactor) is currently being built in France, and it’s one of the most complex scientific and engineering projects in existence.

Continue Reading
Comments

Energy

All the World’s Coal Power Plants in One Map

Today’s interactive map shows all of the world’s coal power plants, plotted by capacity and carbon emissions from 2000 until 2018.

Published

on

All The World’s Coal Power Plants in One Map

The use of coal for fuel dates back thousands of years.

Demand for the energy source really started to soar during the Industrial Revolution, and it continues to power some of the world’s largest economies today. However, as the clean energy revolution heats up, will coal continue to be a viable option?

Today’s data visualization from Carbon Brief maps the changing number of global coal power plants operating between 2000 and 2018. The interactive timeline pulls from the Global Coal Plant Tracker’s latest data and features around 10,000 retired, operating, and planned coal units, totaling close to 3,000 gigawatts (GW) of capacity across 95 countries.

On the map, each circular icon’s size represents each plant’s coal capacity in megawatts (MW). The data also highlights the type of coal burned and the CO₂ emissions produced as a result.

A Precarious Power Source

Throughout its history, coal has been used for everything from domestic heating and steel manufacturing, to railways, gas works, and electricity. The fuel played a pivotal role in powering economic development, and had a promising future with a flurry of plant openings.

However, in 2016, coal output dropped by 231 million tons of oil equivalent (Mtoe). Combined with a rapid slowdown of new plants being built, total coal units operating around the world fell for the first time in 2018.

With the remaining fleet of plants operating fewer hours than ever, plant closures have been triggered in South Africa, India, and China—steadily eroding coal’s bottom line. Industry trends have also forced a wave of coal companies to recently declare bankruptcy, including giants such as Peabody Energy and Alpha Natural.

Can Coal Compete with Clean Energy?

Today, coal is experiencing fierce competition from low-priced natural gas and ever-cheaper renewable power—most notably from wind and solar. Further, solar power costs will continue to decline each year and be cut in half by 2020, relative to 2015 figures.

chart

Source: Lazard

Natural gas surpassed coal as America’s #1 power source in 2016, with the total share of power generated from coal tumbling from 45% in 2010 to 28% in 2018. By next year, the role of coal is expected to be further reduced to 24% of the mix.

On the interactive visualization, the decline of coal is especially evident in 2018 as plant closures sweep across the map. The chart shows how several countries, notably China and India, have been closing many hundreds of smaller, older, and less efficient units, but replacing them with larger and more efficient models.

As of today, China retains the largest fleet of coal plants, consuming a staggering 45% of the world’s coal.


Use the above slider to see the difference between China’s coal plants in 2000 with projected future capacity.

Towards a New Reality

Coal is the most carbon intensive fossil fuel, and for every tonne of coal burned there are approximately 2.5 tonnes of carbon emissions. The International Energy Agency states that all unabated coal must be phased out within a few decades if global warming is to be limited.

Despite these warnings, global coal demand is set to remain stable for the next five years, with declines in the U.S. and Europe offset by immediate growth in India and China. The latter are the main players in the global coal market, but will eventually see a gradual decline in demand as they move away from industrialization.

A total phaseout of unabated coal is planned by 14 of the world’s 78 coal-powered countries, with many of these countries working to convert coal capacity to natural gas.

As the price of premium solar generation drops steadily, and innovation in renewable energy technology becomes more prominent, the world is shifting its attention to a clean energy economy. A global revival of coal looks less and less likely—and the fossil fuel might very well one day become obsolete.

Editor’s Note: The map uses WebGL and will not work on some older browsers. The map may also fail to load if you are using an ad-blocking browser plugin.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Economy

What is a Commodity Super Cycle?

The prices of energy, agriculture, livestock and metals tell the story of human development. Learn about the commodity super cycle in this infographic.

Published

on

Visualizing the Commodity Super Cycle

Since the beginning of the Industrial Revolution, the world has seen its population and the need for natural resources boom.

As more people and wealth translate into the demand for global goods, the prices of commodities—such as energy, agriculture, livestock, and metals—have often followed in sync.

This cycle, which tends to coincide with extended periods of industrialization and modernization, helps in telling a story of human development.

Why are Commodity Prices Cyclical?

Commodity prices go through extended periods during which prices are well above or below their long-term price trend. There are two types of swings in commodity prices: upswings and downswings.

Many economists believe that the upswing phase in super cycles results from a lag between unexpected, persistent, and positive trends to support commodity demand with slow-moving supply, such as the building of a new mine or planting a new crop. Eventually, as adequate supply becomes available and demand growth slows, the cycle enters a downswing phase.

While individual commodity groups have their own price patterns, when charted together they form extended periods of price trends known as “Commodity Super Cycles” where there is a recognizable pattern across major commodity groups.

How can a Commodity Super Cycle be Identified?

Commodity super cycles are different from immediate supply disruptions; high or low prices persist over time.

In our above chart, we used data from the Bank of Canada, who leveraged a statistical technique called an asymmetric band pass filter. This is a calculation that can identify the patterns or frequencies of events in sets of data.

Economists at the Bank of Canada employed this technique using their Commodity Price Index (BCPI) to search for evidence of super cycles. This is an index of the spot or transaction prices in U.S. dollars of 26 commodities produced in Canada and sold to world markets.

  • Energy: Coal, Oil, Natural Gas
  • Metals and Minerals: Gold, Silver, Nickel, Copper, Aluminum, Zinc, Potash, Lead, Iron
  • Forestry: Pulp, Lumber, Newsprint
  • Agriculture: Potatoes, Cattle, Hogs, Wheat, Barley, Canola, Corn
  • Fisheries: Finfish, Shellfish

Using the band pass filter and the BCPI data, the chart indicates that there are four distinct commodity price super cycles since 1899.

  • 1899-1932:
    The first cycle coincides with the industrialization of the United States in the late 19th century.
  • 1933-1961:
    The second began with the onset of global rearmament before the Second World War in the 1930s.
  • 1962-1995:
    The third began with the reindustrialization of Europe and Japan in the late 1950s and early 1960s.
  • 1996 – Present:
    The fourth began in the mid to late 1990s with the rapid industrialization of China

What Causes Commodity Cycles?

The rapid industrialization and growth of a nation or region are the main drivers of these commodity super cycles.

From the rapid industrialization of America emerging as a world power at the beginning of the 20th century, to the ascent of China at the beginning of the 21st century, these historical periods of growth and industrialization drive new demand for commodities.

Because there is often a lag in supply coming online, prices have nowhere to go but above long-term trend lines. Then, prices cannot subside until supply is overshot, or growth slows down.

Is This the Beginning of a New Super Cycle?

The evidence suggests that human industrialization drives commodity prices into cycles. However, past growth was asymmetric around the world with different countries taking the lion’s share of commodities at different times.

With more and more parts of the world experiencing growth simultaneously, demand for commodities is not isolated to a few nations.

Confined to Earth, we could possibly be entering an era where commodities could perpetually be scarce and valuable, breaking the cycles and giving power to nations with the greatest access to resources.

Each commodity has its own story, but together, they show the arc of human development.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Gen III Company Spotlight

Subscribe

Join the 120,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular