Connect with us

Environment

The World’s 25 Largest Lakes, Side by Side

Published

on

The World's 25 Largest Lakes, Side by Side

The World’s 25 Largest Lakes, Side by Side

In many parts of the world, you don’t have to look very far to find a lake.

According to satellite data, there are roughly 100 million lakes larger than one hectare (2.47 acres) to be found globally. The largest lakes, which rival the size of entire nations, are more of a rarity.

One might expect the world’s largest lakes to be very alike, but from depth to saline content, their properties can be quite different. As well, the ranking of the world’s largest lakes is far from static, as human activity can turn a massive body of water into a desert within a single generation.

Today’s graphic – created using the fantastic online tool, Slap It On A Map! – uses the Great Lakes region as a point of comparison for the largest 25 lakes, by area. This is particularly useful in comparing the scale of lakes that are located in disparate parts of the globe.

The Greatest Lakes

The largest lake in the world by a long shot is the Caspian Sea – a name that hints at a past when it was contiguous with the ocean around 11 million years ago. This massive saline lake, which is nearly the same size as Japan, borders five countries: Kazakhstan, Russia, Turkmenistan, Azerbaijan, and Iran. An estimated 48 billion barrels of oil lay beneath the surface of the basin.

The five Great Lakes, which run along the Canada–U.S. border, form one of the largest collections of fresh water on Earth. This interconnected series of lakes represents around 20% of the world’s fresh water and the region supports over 100 million people, roughly equal to one-third of the Canada–U.S. population.

Amazingly, a single lake holds as much fresh water as all the Great Lakes combined – Lake Baikal. This rift lake in Siberia has a maximum depth of 5,371ft (1,637m). For comparison, the largest of the Great Lakes (Lake Superior) is only 25% as deep, with a maximum depth of 1,333ft (406m). Lake Baikal is unique in a number of other ways too. It is the world’s oldest, coldest lake, and around 80% of its animal species are endemic (not found anywhere else).

Here’s a full run-down of the top 25 lakes by area:

RankLake NameSurface AreaTypeCountries on shoreline
1Caspian Sea143,000 sq mi
(371,000km²)
Saline🇰🇿 Kazakhstan
🇷🇺 Russia
🇹🇲 Turkmenistan
🇦🇿 Azerbaijan
🇮🇷 Iran
2Superior31,700 sq mi
(82,100km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
3Victoria26,590 sq mi
(68,870km²)
Freshwater🇺🇬 Uganda
🇰🇪 Kenya
🇹🇿 Tanzania
4Huron23,000 sq mi
(59,600km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
5Michigan22,000 sq mi
(58,000km²)
Freshwater🇺🇸 U.S.
6Tanganyika12,600 sq mi
(32,600km²)
Freshwater🇧🇮 Burundi
🇹🇿 Tanzania
🇿🇲 Zambia
🇨🇩 D.R.C.
7Baikal12,200 sq mi
(31,500km²)
Freshwater🇷🇺 Russia
8Great Bear Lake12,000 sq mi
(31,000km²)
Freshwater🇨🇦 Canada
9Malawi11,400 sq mi
(29,500km²)
Freshwater🇲🇼 Malawi
🇲🇿 Mozambique
🇹🇿 Tanzania
10Great Slave Lake10,000 sq mi
(27,000km²)
Freshwater🇨🇦 Canada
11Erie9,900 sq mi
(25,700km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
12Winnipeg9,465 sq mi
(24,514km²)
Freshwater🇨🇦 Canada
13Ontario7,320 sq mi
(18,960km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
14Ladoga7,000 sq mi
(18,130km²)
Freshwater🇷🇺 Russia
15Balkhash6,300 sq mi
(16,400km²)
Saline🇰🇿 Kazakhstan
16Vostok4,800 sq mi
(12,500km²)
Freshwater🇦🇶 Antarctica
17Onega3,700 sq mi
(9,700km²)
Freshwater🇷🇺 Russia
18Titicaca3,232 sq mi
(8,372km²)
Freshwater🇧🇴 Bolivia
🇵🇪 Peru
19Nicaragua3,191 sq mi
(8,264km²)
Freshwater🇳🇮 Nicaragua
20Athabasca3,030 sq mi
(7,850km²)
Freshwater🇨🇦 Canada
21Taymyr2,700 sq mi
(6,990km²)
Freshwater🇷🇺 Russia
22Turkana2,473 sq mi
(6,405km²)
Saline🇰🇪 Kenya
🇪🇹 Ethiopia
23Reindeer Lake2,440 sq mi
(6,330km²)
Freshwater🇨🇦 Canada
24Issyk-Kul2,400 sq mi
(6,200km²)
Saline🇰🇬 Kyrgyzstan
25Urmia2,317 sq mi
(6,001km²)
Saline🇮🇷 Iran

Shrinking out of the rankings

Not far from the world’s largest lake, straddling the border between Kazakhstan and Uzbekistan, lay the sand dunes of the Aralkum Desert. In the not so distant past, this harsh environment was actually the bed of one of the largest lakes in the world – the Aral Sea.

Aral Sea receding 1960 2020

For reasons both climatic and anthropogenic, the Aral Sea began receding in the 1960s. This dramatic change in surface area took the Aral Sea from the fourth largest lake on Earth to not even ranking in the top 50. Researchers note that the size of the lake has fluctuated a lot over history, but through the lens of modern history these recent changes happened rapidly, leaving local economies devastated and former shoreside towns landlocked.

Lake Chad, in Saharan Africa, and Lake Urmia, in Iran, both face similar challenges, shrinking dramatically in recent decades.

How we work to reverse damage and avoid ecosystem collapse in vulnerable lakes will have a big influence on how the top 25 list may look in future years.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Comments

Agriculture

Our Impact on Climate Change and Global Land Use in 5 Charts

We highlight the five most important takeaways from the IPCC’s recent 1,400+ page report on climate change and land use.

Published

on

IPCC climate report charts

Our Impact on Climate Change and Land Use in 5 Charts

As the world population approaches the eight billion mark, it’s becoming clear that we’re impacting the planet in unprecedented ways.

Humans have made such dramatic changes to Earth’s systems, from climate to geology, that many are suggesting we’ve entered into a new epoch – the Anthropocene.

To better understand the challenges of this era of wide-sweeping human impact on the planet, the Intergovernmental Panel on Climate Change (IPCC) has produced a massive report covering land use and climate change.

According to the IPCC, the situation is looking more dire by the year. Below are a few of the key insights buried within the 1,400+ pages of the massive report.

Shifting Global Land Use

The scale of land use and loss of biodiversity are unprecedented in human history.

According to the report, roughly two-thirds of the world’s ice-free land is now devoted to human uses. Ecosystems, both forested and unforested, only account for about 16% of land today. Part of the reason for this dwindling supply of natural habitat is the rapid increase of agricultural activity around the world.

Since the dawn of the 20th century, global land use has shifted dramatically:

Global land use over time

Not only has land use changed, but so has farming itself. In many parts of the world, increased yields will primarily come from existing agricultural land. For example, wheat yields are projected to increase 11% by the year 2026, despite the growing area only increasing by 1.8%. Rice production exhibits a similar trend, with 93% of the projected increase expected to come from increased yields rather than from area expansion. In some cases, intensive farming practices can degrade soil more than 100x faster than the time it takes for new soil to form, leaving fertilizers to pick up the slack.

One of the most dramatic changes highlighted in the report is the nearly eight-fold increase in the use of nitrogen-based fertilizers since the early 1960s. These types of fertilizers are having serious downstream effects on aquatic ecosystems, in some cases creating “dead zones” such as the one in the Gulf of Mexico.

In addition to the negative impacts outlined above, the simple act of feeding ourselves also accounts for one-third of our global greenhouse gas footprint.

Things are Heating Up

The past half-decade is likely to become the warmest five-year stretch in recorded history, underscoring the rapid pace of climate change. On a global scale, even a small increase in temperature can have a big impact on climate and our ecosystems.

For example, air can hold approximately 7% more moisture for every 1ºC increase, leading to an uptick in extreme rainfall events. These events can trigger landslides, increase the rate of soil erosion, and damage crops – just one example of how climate change can cause a chain reaction.

For the billions of people who live in “drylands”, climate change is serving up a completely different scenario:

“Heatwaves are projected to increase in frequency, intensity and duration in most parts of the world and drought frequency and intensity is projected to increase in some regions that are already drought prone.”

— IPCC report on Climate Change and Land, 2019

This is particularly worrisome as 90% of people in these arid or semiarid regions live in developing economies that are still very reliant on agriculture.

In addition to water scarcity, the IPCC has identified a number of other categories, including soil erosion and permafrost degradation. In all seven categories, our current global temperature puts us firmly in the moderate to high risk zone. These risks predict events with widespread societal impact, such as regional “food shocks” and millions of additional people exposed to wildfires.

This IPCC report makes one thing clear. In addition to tackling emissions in our cities and transportation networks, we’ll need to substantially change the way we use our land and rethink our entire agricultural system if we’re serious about mitigating the impact of climate change.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Environment

Mapping the Flow of the World’s Plastic Waste

Every year, the United States exports almost one million tons of plastic waste, including ‘recycled’ materials. Where does all of this waste go?

Published

on

plastic waste exports imports

Mapping the Flow of the World’s Plastic Waste

The first plastic material, Bakelite, was invented in 1907. It made its way into everything you can imagine: telephones, chess pieces, Chanel jewelry, and electric guitars.

But it was in 1950 that our thirst for plastic truly began. In just 65 years, plastic production soared almost 200 times, resulting in about 6,300 million metric tons of waste today.

How does the world deal with this much debris? The truth is, a lot of plastic waste—both trash and recycled materials—is often shipped overseas to become someone else’s problem.

The Top Exporters and Importers of Plastic Waste

In honor of International Plastic Bag-Free day, today’s graphic uses data from The Guardian to uncover where the world’s plastic waste comes from, and who receives the bulk of these flows.

Top Exporters, Jan-Nov 2018 Top Importers, Jan-Nov 2018 
🇺🇸 United States961,563 tons🇲🇾 Malaysia913,165 tons
🇯🇵 Japan891,719 tons🇹🇭 Thailand471,724 tons
🇩🇪 Germany733,756 tons🇻🇳 Vietnam443,615 tons
🇬🇧 United Kingdom548,256 tons🇭🇰 Hong Kong398,261 tons

The U.S. could fill up 68,000 shipping containers with its annual plastic waste exports. Put another way, 6,000 blue whales would weigh less than this nearly one million tons of waste exports.

Given the amount of plastic which ends up in our oceans, this comparison is just cause for alarm. But one interesting thing to note is that overall totals have halved since 2016:

  • Top 21 total exports (Jan-Nov 2016): 11,342,439 tons
  • Top 21 total exports (Jan-Nov 2018): 5,828,257 tons
  • Percentage change (2016 to 2018): -49%

The world didn’t suddenly stop producing plastic waste overnight. So what caused the decline?

China Cuts Ties with International Plastic Imports

Over recent years, the trajectory of plastic exports has mimicked the movement of plastic waste into China, including the steep plummet that starts in 2018. After being the world’s dumping ground for decades, China enacted a new policy, dubbed “National Sword”, to ban foreign recyclables. The ban, which includes plastics, has left the world scrambling to find other outlets for its waste.

In response, top exporters quickly turned to other countries in Southeast Asia, such as Malaysia, Vietnam, and Thailand.

That didn’t completely stop plastic waste from seeping through, though. China previously imported 600,000 tons of plastic monthly, but since the policy only restricted 24 types of solid waste, 30,000 tons per month still entered the country post-ban, primarily from these countries:

  • 🇮🇩 Indonesia: 7,000 tons per month
  • 🇲🇾 Malaysia: 6,000 tons per month
  • 🇺🇸 United States: 5,500 tons per month
  • 🇯🇵 Japan: 4,000 tons per month

Many countries bearing the load of the world’s garbage are planning to follow in China’s footsteps and issue embargoes of their own. What does that mean for the future?

Recycle and Reuse; But Above All, Reduce

The immense amounts of plastic waste sent overseas include recycled and recyclable materials. That’s because most countries don’t have the means to manage their recycling properly, contrary to public belief. What is being done to mitigate waste in the future?

  1. Improve domestic recycling
    Waste Management is the largest recycling company in the United States. In 2018, it put $110 million towards building more plastic recycling infrastructure.
    Meanwhile, tech giant Amazon invested $10 million in a fund that creates recycling infrastructure and services in different cities.
  2. Reduce single-use plastics
    Recycling on its own may not be enough, which is why countries are thinking bigger to cut down on “throwaway” culture.
    The European Union passed a directive to ban disposable plastics and polystyrene “clamshell” containers, among other items, by 2021. More recently, California passed an ambitious bill to phase out single-use plastics by 2030.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Siyata Mobile Company Spotlight

Subscribe

Join the 120,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular