Connect with us

Green

The World’s 25 Largest Lakes, Side by Side

Published

on

The World's 25 Largest Lakes, Side by Side

The World’s 25 Largest Lakes, Side by Side

In many parts of the world, you don’t have to look very far to find a lake.

According to satellite data, there are roughly 100 million lakes larger than one hectare (2.47 acres) to be found globally. The largest lakes, which rival the size of entire nations, are more of a rarity.

One might expect the world’s largest lakes to be very alike, but from depth to saline content, their properties can be quite different. As well, the ranking of the world’s largest lakes is far from static, as human activity can turn a massive body of water into a desert within a single generation.

Today’s graphic – created using the fantastic online tool, Slap It On A Map! – uses the Great Lakes region as a point of comparison for the largest 25 lakes, by area. This is particularly useful in comparing the scale of lakes that are located in disparate parts of the globe.

The Greatest Lakes

The largest lake in the world by a long shot is the Caspian Sea – a name that hints at a past when it was contiguous with the ocean around 11 million years ago. This massive saline lake, which is nearly the same size as Japan, borders five countries: Kazakhstan, Russia, Turkmenistan, Azerbaijan, and Iran. An estimated 48 billion barrels of oil lay beneath the surface of the basin.

The five Great Lakes, which run along the Canada–U.S. border, form one of the largest collections of fresh water on Earth. This interconnected series of lakes represents around 20% of the world’s fresh water and the region supports over 100 million people, roughly equal to one-third of the Canada–U.S. population.

Amazingly, a single lake holds as much fresh water as all the Great Lakes combined – Lake Baikal. This rift lake in Siberia has a maximum depth of 5,371ft (1,637m). For comparison, the largest of the Great Lakes (Lake Superior) is only 25% as deep, with a maximum depth of 1,333ft (406m). Lake Baikal is unique in a number of other ways too. It is the world’s oldest, coldest lake, and around 80% of its animal species are endemic (not found anywhere else).

Here’s a full run-down of the top 25 lakes by area:

RankLake NameSurface AreaTypeCountries on shoreline
1Caspian Sea143,000 sq mi
(371,000km²)
Saline🇰🇿 Kazakhstan
🇷🇺 Russia
🇹🇲 Turkmenistan
🇦🇿 Azerbaijan
🇮🇷 Iran
2Superior31,700 sq mi
(82,100km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
3Victoria26,590 sq mi
(68,870km²)
Freshwater🇺🇬 Uganda
🇰🇪 Kenya
🇹🇿 Tanzania
4Huron23,000 sq mi
(59,600km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
5Michigan22,000 sq mi
(58,000km²)
Freshwater🇺🇸 U.S.
6Tanganyika12,600 sq mi
(32,600km²)
Freshwater🇧🇮 Burundi
🇹🇿 Tanzania
🇿🇲 Zambia
🇨🇩 D.R.C.
7Baikal12,200 sq mi
(31,500km²)
Freshwater🇷🇺 Russia
8Great Bear Lake12,000 sq mi
(31,000km²)
Freshwater🇨🇦 Canada
9Malawi11,400 sq mi
(29,500km²)
Freshwater🇲🇼 Malawi
🇲🇿 Mozambique
🇹🇿 Tanzania
10Great Slave Lake10,000 sq mi
(27,000km²)
Freshwater🇨🇦 Canada
11Erie9,900 sq mi
(25,700km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
12Winnipeg9,465 sq mi
(24,514km²)
Freshwater🇨🇦 Canada
13Ontario7,320 sq mi
(18,960km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
14Ladoga7,000 sq mi
(18,130km²)
Freshwater🇷🇺 Russia
15Balkhash6,300 sq mi
(16,400km²)
Saline🇰🇿 Kazakhstan
16Vostok4,800 sq mi
(12,500km²)
Freshwater🇦🇶 Antarctica
17Onega3,700 sq mi
(9,700km²)
Freshwater🇷🇺 Russia
18Titicaca3,232 sq mi
(8,372km²)
Freshwater🇧🇴 Bolivia
🇵🇪 Peru
19Nicaragua3,191 sq mi
(8,264km²)
Freshwater🇳🇮 Nicaragua
20Athabasca3,030 sq mi
(7,850km²)
Freshwater🇨🇦 Canada
21Taymyr2,700 sq mi
(6,990km²)
Freshwater🇷🇺 Russia
22Turkana2,473 sq mi
(6,405km²)
Saline🇰🇪 Kenya
🇪🇹 Ethiopia
23Reindeer Lake2,440 sq mi
(6,330km²)
Freshwater🇨🇦 Canada
24Issyk-Kul2,400 sq mi
(6,200km²)
Saline🇰🇬 Kyrgyzstan
25Urmia2,317 sq mi
(6,001km²)
Saline🇮🇷 Iran

Shrinking out of the rankings

Not far from the world’s largest lake, straddling the border between Kazakhstan and Uzbekistan, lay the sand dunes of the Aralkum Desert. In the not so distant past, this harsh environment was actually the bed of one of the largest lakes in the world – the Aral Sea.

Aral Sea receding 1960 2020

For reasons both climatic and anthropogenic, the Aral Sea began receding in the 1960s. This dramatic change in surface area took the Aral Sea from the fourth largest lake on Earth to not even ranking in the top 50. Researchers note that the size of the lake has fluctuated a lot over history, but through the lens of modern history these recent changes happened rapidly, leaving local economies devastated and former shoreside towns landlocked.

Lake Chad, in Saharan Africa, and Lake Urmia, in Iran, both face similar challenges, shrinking dramatically in recent decades.

How we work to reverse damage and avoid ecosystem collapse in vulnerable lakes will have a big influence on how the top 25 list may look in future years.

Subscribe to Visual Capitalist

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.
Click for Comments

Misc

Visualizing the Depth of the Great Lakes

The five Great Lakes account for 21% of the world’s total freshwater. This bathymetric visualization dives into just how deep they are.

Published

on

Visualized: The Depth of The Great Lakes

Click here to view the interactive version of the visualization on Tableau.

As the seasons change, it’s natural to want to enjoy the outdoors to the fullest. The Great Lakes, a distinct geographical region sandwiched between the U.S. and Canada, provides immense opportunity for millions of tourists to do just that every year.

But did you know that altogether the Great Lakes contain 21% of the world’s surface freshwater by volume—or 84% of the surface freshwater in North America?

This bathymetric visualization, created by Alex Varlamov, helps put the sheer size and depth of all five of the Great Lakes into perspective.

What is Bathymetry?

Bathymetry is the study of the underwater depth of ocean or lake floors, a geographical science that falls under the wider umbrella of hydrography.

In essence, it is the underwater equivalent of topography. Contour lines help to represent and study the physical features of bodies of water, from oceans to lakes.

Most bathymetric studies are conducted via sonar systems, transmitting pulses that ‘ping’ off the ocean and lake floor, uncovering what lies below.

The Depth of the Great Lakes, Compared

High on the list of the world’s largest lakes, the five Great Lakes altogether account for over 244,700 km² (94,250 mi²) in total surface area. That’s bigger than the entire United Kingdom.

Lake Superior emerges, well, superior in terms of total surface area, water volume, and both average and maximum depth.

 Surface areaWater volumeAverage depthMaximum depth
Lake Ontario19,000 km²
(7,340 mi²)
1,640 km³
(393 mi³)
86 m
(283 ft)
245 m
(804 ft)
Lake Erie25,700 km²
(9,910 mi²)
480 km³
(116 mi³)
19 m
(62 ft)
64 m
(210 ft)
Lake Michigan58,000 km²
(22,300 mi²)
4,900 km³
(1,180 mi³)
85 m
(279 ft)
282 m
(925 ft)
Lake Huron60,000 km²
(23,000 mi²)
3,500 km³
(850 mi³)
59 m
(195 ft)
228 m
(748 ft)
Lake Superior82,000 km²
(31,700 mi²)
12,000 km³
(2,900 mi³)
147 m
(483 ft)
406 m
(1,333 ft)

Lake Erie is by far the shallowest of the lakes, with an average depth of just 19 meters (62 ft). That means on average, Lake Superior is about eight times deeper.

With that in mind, one drawback of the visualization is that it doesn’t provide an accurate view of how deep these lakes are in relation to one another.

For that, check out this additional visualization also created by Alex Varlamov, which is scaled to the same 20 meter step—in this view, Lake Erie practically disappears.

More than Meets the Eye

The Great Lakes are not only notable for their form, but also their function—they’re a crucial waterway contributing to the economy of the area, supporting over 50 million jobs and contributing $6 trillion to gross domestic product (GDP).

Together, the five Great Lakes feed into the Atlantic Ocean—and when we expand the scope to compare these lakes to vast oceans, trenches, and drill holes, the depth of the Great Lakes barely scratches the surface.

Continue Reading

Energy

Visualizing the Power Consumption of Bitcoin Mining

Bitcoin mining requires significant amounts of energy, but what does this consumption look like when compared to countries and companies?

Published

on

Visualizing the Power Consumption of Bitcoin Mining

Cryptocurrencies have been some of the most talked-about assets in recent months, with bitcoin and ether prices reaching record highs. These gains were driven by a flurry of announcements, including increased adoption by businesses and institutions.

Lesser known, however, is just how much electricity is required to power the Bitcoin network. To put this into perspective, we’ve used data from the University of Cambridge’s Bitcoin Electricity Consumption Index (CBECI) to compare Bitcoin’s power consumption with a variety of countries and companies.

Why Does Bitcoin Mining Require So Much Power?

When people mine bitcoins, what they’re really doing is updating the ledger of Bitcoin transactions, also known as the blockchain. This requires them to solve numerical puzzles which have a 64-digit hexadecimal solution known as a hash.

Miners may be rewarded with bitcoins, but only if they arrive at the solution before others. It is for this reason that Bitcoin mining facilities—warehouses filled with computers—have been popping up around the world.

These facilities enable miners to scale up their hashrate, also known as the number of hashes produced each second. A higher hashrate requires greater amounts of electricity, and in some cases can even overload local infrastructure.

Putting Bitcoin’s Power Consumption Into Perspective

On March 18, 2021, the annual power consumption of the Bitcoin network was estimated to be 129 terawatt-hours (TWh). Here’s how this number compares to a selection of countries, companies, and more.

NamePopulation Annual Electricity Consumption (TWh)
China1,443M6,543
United States330.2M3,989
All of the world’s data centers-205
State of New York19.3M161
Bitcoin network -129 
Norway5.4M124
Bangladesh165.7M70
Google-12
Facebook-5
Walt Disney World Resort (Florida)-1

Note: A terawatt hour (TWh) is a measure of electricity that represents 1 trillion watts sustained for one hour.
Source: Cambridge Centre for Alternative Finance, Science Mag, New York ISO, Forbes, Facebook, Reedy Creek Improvement District, Worldometer

If Bitcoin were a country, it would rank 29th out of a theoretical 196, narrowly exceeding Norway’s consumption of 124 TWh. When compared to larger countries like the U.S. (3,989 TWh) and China (6,543 TWh), the cryptocurrency’s energy consumption is relatively light.

For further comparison, the Bitcoin network consumes 1,708% more electricity than Google, but 39% less than all of the world’s data centers—together, these represent over 2 trillion gigabytes of storage.

Where Does This Energy Come From?

In a 2020 report by the University of Cambridge, researchers found that 76% of cryptominers rely on some degree of renewable energy to power their operations. There’s still room for improvement, though, as renewables account for just 39% of cryptomining’s total energy consumption.

Here’s how the share of cryptominers that use each energy type vary across four global regions.

Energy SourceAsia-PacificEuropeLatin America
and the Caribbean
North America
Hydroelectric65%60%67%61%
Natural gas38%33%17%44%
Coal65%2%0%28%
Wind23%7%0%22%
Oil12%7%33%22%
Nuclear12%7%0%22%
Solar12%13%17%17%
Geothermal8%0%0%6%

Source: University of Cambridge
Editor’s note: Numbers in each column are not meant to add to 100%

Hydroelectric energy is the most common source globally, and it gets used by at least 60% of cryptominers across all four regions. Other types of clean energy such as wind and solar appear to be less popular.

Coal energy plays a significant role in the Asia-Pacific region, and was the only source to match hydroelectricity in terms of usage. This can be largely attributed to China, which is currently the world’s largest consumer of coal.

Researchers from the University of Cambridge noted that they weren’t surprised by these findings, as the Chinese government’s strategy to ensure energy self-sufficiency has led to an oversupply of both hydroelectric and coal power plants.

Towards a Greener Crypto Future

As cryptocurrencies move further into the mainstream, it’s likely that governments and other regulators will turn their attention to the industry’s carbon footprint. This isn’t necessarily a bad thing, however.

Mike Colyer, CEO of Foundry, a blockchain financing provider, believes that cryptomining can support the global transition to renewable energy. More specifically, he believes that clustering cryptomining facilities near renewable energy projects can mitigate a common issue: an oversupply of electricity.

“It allows for a faster payback on solar projects or wind projects… because they would [otherwise] produce too much energy for the grid in that area”
– Mike Colyer, CEO, Foundry

This type of thinking appears to be taking hold in China as well. In April 2020, Ya’an, a city located in China’s Sichuan province, issued a public guidance encouraging blockchain firms to take advantage of its excess hydroelectricity.

Continue Reading

Subscribe

Join the 240,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular