Infographic: Visualizing the Commodity Super Cycle
Connect with us

Energy

What is a Commodity Super Cycle?

Published

on

What is a Commodity Super Cycle?

Visualizing the Commodity Super Cycle

Since the beginning of the Industrial Revolution, the world has seen its population and the need for natural resources boom.

As more people and wealth translate into the demand for global goods, the prices of commodities—such as energy, agriculture, livestock, and metals—have often followed in sync.

This cycle, which tends to coincide with extended periods of industrialization and modernization, helps in telling a story of human development.

Why are Commodity Prices Cyclical?

Commodity prices go through extended periods during which prices are well above or below their long-term price trend. There are two types of swings in commodity prices: upswings and downswings.

Many economists believe that the upswing phase in super cycles results from a lag between unexpected, persistent, and positive trends to support commodity demand with slow-moving supply, such as the building of a new mine or planting a new crop. Eventually, as adequate supply becomes available and demand growth slows, the cycle enters a downswing phase.

While individual commodity groups have their own price patterns, when charted together they form extended periods of price trends known as “Commodity Super Cycles” where there is a recognizable pattern across major commodity groups.

How can a Commodity Super Cycle be Identified?

Commodity super cycles are different from immediate supply disruptions; high or low prices persist over time.

In our above chart, we used data from the Bank of Canada, who leveraged a statistical technique called an asymmetric band pass filter. This is a calculation that can identify the patterns or frequencies of events in sets of data.

Economists at the Bank of Canada employed this technique using their Commodity Price Index (BCPI) to search for evidence of super cycles. This is an index of the spot or transaction prices in U.S. dollars of 26 commodities produced in Canada and sold to world markets.

  • Energy: Coal, Oil, Natural Gas
  • Metals and Minerals: Gold, Silver, Nickel, Copper, Aluminum, Zinc, Potash, Lead, Iron
  • Forestry: Pulp, Lumber, Newsprint
  • Agriculture: Potatoes, Cattle, Hogs, Wheat, Barley, Canola, Corn
  • Fisheries: Finfish, Shellfish

Using the band pass filter and the BCPI data, the chart indicates that there are four distinct commodity price super cycles since 1899.

  • 1899-1932:
    The first cycle coincides with the industrialization of the United States in the late 19th century.
  • 1933-1961:
    The second began with the onset of global rearmament before the Second World War in the 1930s.
  • 1962-1995:
    The third began with the reindustrialization of Europe and Japan in the late 1950s and early 1960s.
  • 1996 – Present:
    The fourth began in the mid to late 1990s with the rapid industrialization of China

What Causes Commodity Cycles?

The rapid industrialization and growth of a nation or region are the main drivers of these commodity super cycles.

From the rapid industrialization of America emerging as a world power at the beginning of the 20th century, to the ascent of China at the beginning of the 21st century, these historical periods of growth and industrialization drive new demand for commodities.

Because there is often a lag in supply coming online, prices have nowhere to go but above long-term trend lines. Then, prices cannot subside until supply is overshot, or growth slows down.

Is This the Beginning of a New Super Cycle?

The evidence suggests that human industrialization drives commodity prices into cycles. However, past growth was asymmetric around the world with different countries taking the lion’s share of commodities at different times.

With more and more parts of the world experiencing growth simultaneously, demand for commodities is not isolated to a few nations.

Confined to Earth, we could possibly be entering an era where commodities could perpetually be scarce and valuable, breaking the cycles and giving power to nations with the greatest access to resources.

Each commodity has its own story, but together, they show the arc of human development.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the World’s Largest Hydroelectric Dams

Hydroelectric dams generate 40% of the world’s renewable energy, the largest of any type. View this infographic to learn more.

Published

on

Visualizing the World’s Largest Hydroelectric Dams

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Did you know that hydroelectricity is the world’s biggest source of renewable energy? According to recent figures from the International Renewable Energy Agency (IRENA), it represents 40% of total capacity, ahead of solar (28%) and wind (27%).

This type of energy is generated by hydroelectric power stations, which are essentially large dams that use the water flow to spin a turbine. They can also serve secondary functions such as flow monitoring and flood control.

To help you learn more about hydropower, we’ve visualized the five largest hydroelectric dams in the world, ranked by their maximum output.

Overview of the Data

The following table lists key information about the five dams shown in this graphic, as of 2021. Installed capacity is the maximum amount of power that a plant can generate under full load.

CountryDamRiverInstalled Capacity
(gigawatts)
Dimensions
(meters)
🇨🇳 ChinaThree Gorges DamYangtze River22.5181 x 2,335
🇧🇷 Brazil / 🇵🇾 ParaguayItaipu DamParana River14.0196 x 7,919
🇨🇳 ChinaXiluodu DamJinsha River13.9286 x 700
🇧🇷 BrazilBelo Monte DamXingu River11.290 X 3,545
🇻🇪 VenezuelaGuri DamCaroni River10.2162 x 7,426

At the top of the list is China’s Three Gorges Dam, which opened in 2003. It has an installed capacity of 22.5 gigawatts (GW), which is close to double the second-place Itaipu Dam.

In terms of annual output, the Itaipu Dam actually produces about the same amount of electricity. This is because the Parana River has a low seasonal variance, meaning the flow rate changes very little throughout the year. On the other hand, the Yangtze River has a significant drop in flow for several months of the year.

For a point of comparison, here is the installed capacity of the world’s three largest solar power plants, also as of 2021:

  • Bhadla Solar Park, India: 2.2 GW
  • Hainan Solar Park, China: 2.2 GW
  • Pavagada Solar Park, India: 2.1 GW

Compared to our largest dams, solar plants have a much lower installed capacity. However, in terms of cost (cents per kilowatt-hour), the two are actually quite even.

Closer Look: Three Gorges Dam

The Three Gorges Dam is an engineering marvel, costing over $32 billion to construct. To wrap your head around its massive scale, consider the following facts:

  • The Three Gorges Reservoir (which feeds the dam) contains 39 trillion kg of water (42 billion tons)
  • In terms of area, the reservoir spans 400 square miles (1,045 square km)
  • The mass of this reservoir is large enough to slow the Earth’s rotation by 0.06 microseconds

Of course, any man-made structure this large is bound to have a profound impact on the environment. In a 2010 study, it was found that the dam has triggered over 3,000 earthquakes and landslides since 2003.

The Consequences of Hydroelectric Dams

While hydropower can be cost-effective, there are some legitimate concerns about its long-term sustainability.

For starters, hydroelectric dams require large upstream reservoirs to ensure a consistent supply of water. Flooding new areas of land can disrupt wildlife, degrade water quality, and even cause natural disasters like earthquakes.

Dams can also disrupt the natural flow of rivers. Other studies have found that millions of people living downstream from large dams suffer from food insecurity and flooding.

Whereas the benefits have generally been delivered to urban centers or industrial-scale agricultural developments, river-dependent populations located downstream of dams have experienced a difficult upheaval of their livelihoods.
– Richter, B.D. et al. (2010)

Perhaps the greatest risk to hydropower is climate change itself. For example, due to the rising frequency of droughts, hydroelectric dams in places like California are becoming significantly less economical.

Continue Reading

Energy

What are the Benefits of Fusion Energy?

One of the most promising technologies, fusion, has attracted the attention of governments and private companies.

Published

on

General-Fusion_Benefits-of-Fusion
The following content is sponsored by General Fusion

What are The Benefits of Fusion Energy?

As the world moves towards net-zero emissions, sustainable and affordable power sources are urgently needed by humanity.

One of the most promising technologies, fusion, has attracted the attention of governments and private companies like Chevron and Google. In fact, Bloomberg Intelligence has estimated that the fusion market may eventually be valued at $40 trillion.

In this infographic sponsored by General Fusion, we discuss the benefits of fusion as a clean energy source.

The Ultimate Source of Energy 

Fusion powers the sun and the stars, where the immense force of gravity compresses and heats hydrogen plasma, fusing it into helium and releasing enormous amounts of energy. Here on Earth, scientists use isotopes of hydrogen—deuterium and tritium—to power fusion plants.

Fusion energy offers a wide range of benefits, such as:

1. Ample resources:

Both atoms necessary for nuclear fusion are abundant on Earth: deuterium is found in seawater, while tritium can be produced from lithium.

2. Sustainable

Energy-dense generation like fusion minimizes land use needs and can replace aging infrastructure like old power plants. 

3. Clean

There are no CO₂ or other harmful atmospheric emissions from the fusion process.

4. Scalable

With limited expected regulatory burden or export controls, fusion scales effectively with a small land footprint that can be located close to cities.

5. Safety advantage

Unlike atomic fission, fusion does not create any long-lived radioactive nuclear waste. Its radiation profile is similar to widely used medical and industrial applications like cyclotrons for cancer treatment.

6. Reliable

Fusion energy is on-demand and independent from the weather, making it an excellent option in a dependable portfolio for power generation.

Commercializing Fusion Energy

More than 130 countries have now set or are considering a target of reducing emissions to net-zero by 2050. Meanwhile, global energy demand is expected to increase by 47% in the next 30 years.

While renewables like wind and solar are intermittent and need a baseload source of clean energy to supplement them, fusion, when commercially implemented, could deliver clean, abundant, reliable, and cost-competitive energy. 

General Fusion seeks to transform the world’s energy supply with the most practical path to commercial fusion energy. Click here to learn more.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular