Connect with us

Strategic Metals

Mapped: The Geology of the Moon in Astronomical Detail

Published

on

View the medium resolution version of this map (9mb) | View the full resolution version of this map (47mb)

Geology of the Moon Map

View the medium resolution version of this map (9mb) | View the full resolution version of this map (47mb)

Mapped: The Geology of the Moon in Astronomical Detail

If you were to land on the Moon, where would you go?

Today’s post is the incredible Unified Geologic Map of the Moon from the USGS, which combines information from six regional lunar maps created during the Apollo era, as well as recent spacecraft observations.

Feet on the Ground, Head in the Sky

Since the beginning of humankind, the Moon has captured our collective imagination. It is one of the few celestial bodies visible to the naked eye from Earth. Over time different cultures wrapped the Moon in their own myths. To the Egyptians it was the god Thoth, to the Greeks, the goddess Artemis, and to the Hindus, Chandra.

Thoth was portrayed as a wise counselor who solved disputes and invented writing and the 365-day calendar. A headdress with a lunar disk sitting atop a crescent moon denoted Thoth as the arbiter of times and seasons.

Artemis was the twin sister of the sun god Apollo, and in Greek mythology she presided over childbirth, fertility, and the hunt. Just like her brother that illuminated the day, she was referred to as the torch bringer during the dark of night.

Chandra means the “Moon” in Sanskrit, Hindi, and other Indian languages. According to one Hindu legend, Ganesha—an elephant-headed deity—was returning home on a full moon night after a feast. On the journey, a snake crossed his pathway, frightening his horse. An overstuffed Ganesha fell to the ground on his stomach, vomiting out his dinner. On observing this, Chandra laughed, causing Ganesha to lose his temper. He broke off one of his tusks and hurled it toward the Moon, cursing him so that he would never be whole again. This legend describes the Moon’s waxing and waning including the big crater on the Moon, visible from Earth.

Such lunar myths have waned as technology has evolved, removing the mystery of the Moon but also opening up scientific debate.

Celestial Evolution: Two Theories

The pot marks on the Moon can be easily seen from the Earth’s surface with the naked eye, and it has led to numerous theories as to the history of the Moon. Recent scientific study brings forward two primary ideas.

One opinion of those who have studied the Moon is that it was once a liquid mass, and that its craters represent widespread and prolonged volcanic activity, when the gases and lava of the heated interior exploded to the surface.

However, there is another explanation for these lunar craters. According to G. K. Gilbert, of the USGS, the Moon was formed by the joining of a ring of meteorites which once encircled the Earth, and after the formation of the lunar sphere, the impact of meteors produced “craters” instead of arising from volcanic activity.

Either way, mapping the current contours of the lunar landscape will guide future human missions to the Moon by revealing regions that may be rich in useful resources or areas that need more detailed mapping to land a spacecraft safely .

Lay of the Land: Reading the Contours of the Moon

This map is a 1:5,000,000-scale geologic map built from six separate digital maps. The goal was to create a resource for science research and analysis to support future geologic mapping efforts.

Mapping purposes divide the Moon into the near side and far side. The far side of the Moon is the side that always faces away from the Earth, while the near side faces towards the Earth.

The most visible topographic feature is the giant far side South Pole-Aitken basin, which possesses the lowest elevations of the Moon. The highest elevations are found just to the northeast of this basin. Other large impact basins, such as the Maria Imbrium, Serenitatis, Crisium, Smythii, and Orientale, also have low elevations and elevated rims.

Shapes of Craters

The colors on the map help to define regional features while also highlighting consistent patterns across the lunar surface. Each one of these regions hosts the potential for resources.

Lunar Resources

Only further study will resolve the evolution of the Moon, but it is clear that there are resources earthlings can exploit. Hydrogen, oxygen, silicon, iron, magnesium, calcium, aluminum, manganese, and titanium are some of the metals and minerals on the Moon.

Interestingly, oxygen is the most abundant element on the Moon. It’s a primary component found in rocks, and this oxygen can be converted to a breathable gas with current technology. A more practical question would be how to best power this process.

Lunar soil is the easiest to mine, it can provide protection from radiation and meteoroids as material for construction. Ice can provide water for radiation shielding, life support, oxygen, and rocket propellant feed stock. Compounds from permanently shadowed craters could provide methane, ammonia, carbon dioxide, and carbon monoxide.

This is just the beginning—as more missions are sent to the Moon, there is more to discover.

Space Faring Humans

NASA plans to land astronauts—one female, one male—to the Moon by 2024 as part of the Artemis 3 mission, and after that, about once each year. It’s the beginning of an unfulfilled promise to make humans a space-faring civilization.

The Moon is just the beginning…the skills learned to map Near-Earth Objects will be the foundation for further exploration and discovery of the universe.

Subscribe to Visual Capitalist
Click for Comments

Politics

The 50 Minerals Critical to U.S. Security

This graphic lists all minerals that are deemed critical to both the economic and national security of the United States.

Published

on

The 50 Minerals Critical to U.S. Security

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

The U.S. aims to cut its greenhouse gas emissions in half by 2030 as part of its commitment to tackling climate change, but might be lacking the critical minerals needed to achieve its goals.

The American green economy will rely on renewable sources of energy like wind and solar, along with the electrification of transportation. However, local production of the raw materials necessary to produce these technologies, including solar panels, wind turbines, and electric vehicles, is lacking. Understandably, this has raised concerns in Washington.

In this graphic, based on data from the U.S. Geological Survey, we list all of the minerals that the government has deemed critical to both the economic and national security of the United States.

What are Critical Minerals?

A critical mineral is defined as a non-fuel material considered vital for the economic well-being of the world’s major and emerging economies, whose supply may be at risk. This can be due to geological scarcity, geopolitical issues, trade policy, or other factors.

In 2018, the U.S. Department of the Interior released a list of 35 critical minerals. The new list, released in February 2022, contains 15 more commodities.

Much of the increase in the new list is the result of splitting the rare earth elements and platinum group elements into individual entries rather than including them as “mineral groups.” In addition, the 2022 list of critical minerals adds nickel and zinc to the list while removing helium, potash, rhenium, and strontium.

Mineral Example UsesNet Import Reliance
BerylliumAlloying agent in aerospace, defense industries 11%
AluminumPower lines, construction, electronics 13%
ZirconiumHigh-temparature ceramics production 25%
PalladiumCatalytic converters40%
GermaniumFiber optics, night vision applications50%
LithiumRechargeable batteries 50%
MagnesiumAlloys, electronics 50%
NickelStainless steel, rechargeable batteries 50%
TungstenWear-resistant metals50%
BariteHydrocarbon production75%
ChromiumStainless steel75%
TinCoatings, alloys for steel 75%
CobaltRechargeable batteries, superalloys76%
PlatinumCatalytic converters 79%
AntimonyLead-acid batteries, flame retardants 81%
ZincMetallurgy to produce galvanized steel 83%
TitaniumWhite pigment, metal alloys88%
BismuthMedical, atomic research 94%
TelluriumSolar cells, thermoelectric devices95%
VanadiumAlloying agent for iron and steel96%
ArsenicSemi-conductors, lumber preservatives, pesticides 100%
CeriumCatalytic converters, ceramics, glass, metallurgy100%
CesiumResearch, development100%
DysprosiumData storage devices, lasers100%
ErbiumFiber optics, optical amplifiers, lasers100%
EuropiumPhosphors, nuclear control rods 100%
FluorsparManufacture of aluminum, cement, steel, gasoline100%
GadoliniumMedical imaging, steelmaking100%
GalliumIntegrated circuits, LEDs100%
GraphiteLubricants, batteries100%
HolmiumPermanent magnets, nuclear control rods100%
IndiumLiquid crystal display screens 100%
LanthanumCatalysts, ceramics, glass, polishing compounds100%
LutetiumScintillators for medical imaging, cancer therapies 100%
ManganeseSteelmaking, batteries 100%
NeodymiumRubber catalysts, medical, industrial lasers 100%
NiobiumSteel, superalloys100%
PraseodymiumPermanent magnets, batteries, aerospace alloys100%
RubidiumResearch, development in electronics 100%
SamariumCancer treatment, absorber in nuclear reactors 100%
ScandiumAlloys, ceramics, fuel cells100%
TantalumElectronic components, superalloys100%
TerbiumPermanent magnets, fiber optics, lasers100%
ThuliumMetal alloys, lasers 100%
YtterbiumCatalysts, scintillometers, lasers, metallurgy 100%
YttriumCeramic, catalysts, lasers, metallurgy, phosphors 100%
IridiumCoating of anodes for electrochemical processesNo data available
RhodiumCatalytic converters, electrical componentsNo data available
RutheniumElectrical contacts, chip resistors in computersNo data available
HafniumNuclear control rods, alloysNet exporter

The challenge for the U.S. is that the local production of these raw materials is extremely limited.

For instance, in 2021 there was only one operating nickel mine in the country, the Eagle mine in Michigan. The facility ships its concentrates abroad for refining and is scheduled to close in 2025. Likewise, the country only hosted one lithium mine, the Silver Peak Mine in Nevada.

At the same time, most of the country’s supply of critical minerals depends on countries that have historically competed with America.

China’s Dominance in Minerals

Perhaps unsurprisingly, China is the single largest supply source of mineral commodities for the United States.

Cesium, a critical metal used in a wide range of manufacturing, is one example. There are only three pegmatite mines in the world that can produce cesium, and all were controlled by Chinese companies in 2021.

Furthermore, China refines nearly 90% of the world’s rare earths. Despite the name, these elements are abundant on the Earth’s crust and make up the majority of listed critical minerals. They are essential for a variety of products like EVs, advanced ceramics, computers, smartphones, wind turbines, monitors, and fiber optics.

After China, the next largest source of mineral commodities to the United States has been Canada, which provided the United States with 16 different elements in 2021.

The Rising Demand for Critical Minerals

As the world’s clean energy transitions gather pace, demand for critical minerals is expected to grow quickly.

According to the International Energy Association, the rise of low-carbon power generation is projected to triple mineral demand from this sector by 2040.

The shift to a sustainable economy is important, and consequently, securing the critical minerals necessary for it is just as vital.

Continue Reading

Subscribe

Popular