Map of Mars: The Geology of the Red Planet - Visual Capitalist
Connect with us


Map of Mars: The Geology of the Red Planet



View the full-size version of this infographic

A Map of Mars: The Geology of the Red Planet

Mapping Mars: The Geology of the Red Planet

View the high resolution version of this incredible map by clicking here

For centuries, Mars has been mythically defined by its characteristic red appearance.

In Babylonian astronomy, Mars was named after Nergal, the deity of fire, war, and destruction. In Chinese and Japanese texts, the planet was known as 火星, the fire star.

Although this unique reddish hue has been a key defining characteristic of Mars in culture for centuries, today we now know that it’s the iron oxide soil of the Martian landscape that makes it the “Red Planet” – and that there is much more to Mars than its color upon closer observation.

Above, today’s map, posted and created by Reddit user /hellofromthemoon, brings together the data from centuries of observation and the numerous missions to the Red Planet to map out its geology on a grand scale.

A Red Dot in the Sky

Egyptian astronomers first observed the planet Mars four thousand years ago and named it “Horus-the-red.” Babylonian astronomers marked its course through the night sky to track the passage of time. But it was not until 1610, when Galileo Galilei witnessed Mars with his own eyes through a telescope, that Mars was revealed as a whole other world.

Over the centuries with improving technology, a succession of astronomers observed and crudely mapped out everything from polar ice caps to yellow clouds, and white and dark spots denoting varying elevations across the Martian surface. Some of the earliest maps of Mars date to 1831. But there is only so much you can accurately observe from the surface of the Earth.

On July 14, 1965, NASA successfully received the first up-close images of Mars from the Mariner 4 spacecraft, passing within 9,844 kilometers (6,117 miles) of Mars’ surface. Mariner 4 captured the image of a large ancient crater and confirmed the existence of a thin atmosphere composed largely of carbon dioxide.

Since then, four space agencies have successfully made it to Mars: NASA, the former Soviet Union space program, the European Space Agency and the Indian Space Research Organization. From orbital satellites to surface exploration with robots, each successful mission has brought back important data to develop an evolving picture of the planet.

Here is a complete list of both the successful and failed missions to Mars.

Martian Geology

On Mars, we see volcanoes, canyons, and impact basins much like the ones on Earth. The yellows scattered across the map indicate meteor impacts of varying size while the swaths of red indicate volcanoes and their associated lava flows. The varying colors of brown indicate the cratered highlands and midlands that make up most of the southern hemisphere.

The planet appears asymmetric. Most of the southern hemisphere is heavily cratered and resembles the moon’s highlands. In contrast, the northern hemisphere is sparsely cratered and has many large volcanoes.

Mars is approximately one-half the diameter of the Earth, but both planets have the same amount of dry land. This is because the current surface of Mars has no liquid water.

Mars and Earth are very different planets when it comes to temperature, size, and atmosphere, but geologic processes on the two planets are eerily similar. The sheer size of some landforms on Mars would shadow over similar features on Earth because of the lack of water erosion. This lack of erosion has preserved billion year-old geologic features.

The tallest mountain on Mars and in the solar system is Olympus Mons, and it is two and a half times taller than Mt. Everest. A Martian canyon system, called Valles Marineris, is the length of the entire continental United States and three times deeper than the Grand Canyon.

Mars Colony: Location, Location, Location

The first step to building a colony is to figure out where the best chance of survival is. For Mars, some researchers have identified the planet’s poles, which contain millennia-old ice deposits. These are thought to contain large amounts of ice, which mars settlers could extract and turn into liquid water.

The poles also host other natural resources, such as carbon dioxide, iron, aluminum, silicon and sulfur, which could be used to make glass, brick and plastic. Furthermore, the planet’s atmosphere contains enough hydrogen and methanol for fuel.

Closing the Distance

The map above represents the culmination of centuries of work which we are lucky enough to view here on a computer, conveniently online for us to appreciate and wonder what life’s like on the surface of Mars.

Who knows what more exploration will reveal.

Subscribe to Visual Capitalist
Click for Comments


Nature Timespiral: The Evolution of Earth from the Big Bang

This spiral timeline shows the events that led us to our modern world, from the Big Bang to the present.



Nature Timespiral: The Evolution of Earth from the Big Bang

Since the dawn of humanity, we have looked questioningly to the heavens with great interest and awe. We’ve called on the stars to guide us, and have made some of humanity’s most interesting discoveries based on those observations. This also led us to question our existence and how we came to be in this moment in time.

That journey began some 14 billion years ago, when the Big Bang led to the universe emerging from a hot, dense sea of matter and energy. As the cosmos expanded and cooled, they spawned galaxies, stars, planets, and eventually, life.

In the above visualization, Pablo Carlos Buddassi illustrates this journey of epic proportions in the intricately designed Nature Timespiral, depicting the various eras that the Earth has gone through since the inception of the universe itself.

Evolutionary Timeline of the World

Not much is known about what came before the Big Bang, but we do know that it launched a sequence of events that gave rise to the universal laws of physics and the chemical elements that make up matter. How the Earth came about, and life subsequently followed, is a wondrous story of time and change.

Let’s look at what transpired after the Big Bang to trace our journey through the cosmos.

The Big Bang and Hadean Eon

The Big Bang formed the entire universe that we know, including the elements, forces, stars, and planets. Hydrogen and massive dissipation of heat dominated the initial stages of the universe.

During a time span known as the Hadean eon, our Solar System formed within a large cloud of gas and dust. The Sun’s gravitational pull brought together spatial particles to create the Earth and other planets, but they would take a long time to reach their modern forms.

Archean Eon (4 – 2.5 billion years ago)

After its initial formation, the surface of the Earth was extremely hot and entirely liquid. This subsequent eon saw the planet cool down massively, solidifying some of the liquid surface and giving rise to oceans and continents, as well as the first recorded history of rocks.

Early in this time frame, known as the Archean eon, life appeared on Earth. The oldest discovered fossils, consisting of tiny, preserved microorganisms, date to this eon roughly 3.5 billion years ago.

Paleoproterozoic Era (2.5 – 1.6 billion years ago)

The first era of the Proterozoic Eon, the Paleoproterozoic, was the longest in Earth’s geological history. Tectonic plates arose and landmasses shifted across the globe—it was the beginning of the formation of the Earth we know today.

Cyanobacteria, the first organisms using photosynthesis, also appeared during this period. Their photosynthetic activity brought about a rapid upsurge in atmospheric oxygen, resulting in the Great Oxidation Event. This killed off many primordial anaerobic bacterial groups but paved the way for multicellular life to grow and flourish.

Mesoproterozoic Era (1.6 – 1 billion years ago)

The Mesoproterozoic occurred during what is known as the “boring billion” stage of Earth’s history. That is due to a lack of widespread geochemical activity and the relative stability of the ocean carbon reservoirs.

But this era did see the break-up of the supercontinents and the formation of new continents. This period also saw the first noted case of sexual reproduction among organisms and the probable appearance of multicellular organisms and green plants.

Neoproterozoic Era (1 billion – 542.0 million years ago)

In some respects, the Neoproterozoic era is one of the most profound time periods in Earth’s history. It bookends two major moments in the planet’s evolutionary timeline, with predominantly microbial life on one side, and the introduction of diverse, multicellular organisms on the other.

At the same time, Earth also experienced severe glaciations known as the Cryogenian Period and its first ice age, also known as Snowball Earth.

The era saw the formation of the ozone layer and the earliest evidence of multicellular life, including the emergence of the first hard-shelled animals, such as trilobites and archaeocyathids.

Paleozoic Era (541 million – 252 million years ago)

The Paleozoic is best known for ushering in an explosion of life on Earth, with two of the most critical events in the history of animal life. At its beginning, multicellular animals underwent a dramatic Cambrian explosion in aquatic diversity, and almost all living animals appeared within a few millions of years.

At the other end of the Paleozoic, the largest mass extinction in history resulted in 96% of marine life and 70% of terrestrial life dying out. Halfway between these events, animals, fungi, and plants colonized the land, and the insects took to the air.

Mesozoic Era (252 million – 66 million years ago)

The Mesozoic was the Age of Reptiles. Dinosaurs, crocodiles, and pterosaurs ruled the land and air. This era can be subdivided into three periods of time:

  • Triassic (252 to 201.3 million years ago)
  • Jurassic (201.3 to 145 million years ago)
  • Cretaceous (145 to 66 million years ago)

The rise of the dinosaurs began at the end of the Triassic Period. A fossil of one of the earliest-known dinosaurs, a two-legged omnivore roughly three feet long-named Eoraptor, is dated all the way back to this time.

Scientists believe the Eoraptor (and a few other early dinosaurs still being discovered today) evolved into the many species of well-known dinosaurs that would dominate the planet during the Jurassic period. They would continue to flourish well into the Cretaceous period, when it is widely accepted that the Chicxulub impactor, the plummeting asteroid that crashed into Earth off the coast of Mexico, brought about the end of the Age of Reptiles.

Cenozoic Era (66 million – Present Day)

After the end of the Age of Dinosaurs, this era saw massive adaptations by natural flora and fauna to survive. The plants and animals that formed during this era look most like those on Earth today.

The earliest forms of modern mammals, amphibians, birds, and reptiles can be traced back to the Cenozoic. Human history is entirely contained within this period, as apes developed through evolutionary pressure and gave rise to the present-day human being or Homo sapiens.

Compared to the evolutionary timeline of the world, human history has risen quite rapidly and dramatically. Going from our first stone tools and the Age of the Kings to concrete jungles with modern technology may seem like a long journey, but compared to everything that came before it, is but a brief blink of an eye.

*Editor’s note: An earlier version of this article contained errors in the header graphic and an incorrect citation, and has since been updated.

Continue Reading


Comparing Objects in Our Solar System by Rotation, Size, and More

This video offers a new perspective on objects in our solar system, comparing them by their size, rotational speed, and tilt.



Comparison of Select Objects in our Solar System

Comparison of Selected Objects in our Solar System

Our solar system is home to various celestial objects, including planets, moons, asteroids, and even dwarf planets.

All of these objects differ in many ways, yet work in perfect unison. A comparative study of the various features of these celestial bodies gives us some fascinating results.

The above animation from planetary scientist Dr. James O’Donoghue helps put in perspective the different objects in the solar system in terms of size, rotational speed, and the axial tilt at which they rotate.

Selected Solar System Objects to Scale

With such a diverse solar system of planets and other celestial objects, there is no shortage of questions to think about. Like what is the exact diameter of Jupiter, or how fast does Pluto rotate?

To answer them, here is a comparison of some select celestial bodies in our solar system, going from the biggest to smallest objects:

Celestial BodyDiameter (km)Rotational Period (Hours)Axial Tilt

Planets like Venus or Pluto rotate in the opposite direction to Earth, or in retrograde, and thus are denoted with a negative symbol before their values.

Another interesting observation is that the Sun rotates on its axis only once in about 27 days and has an axial tilt of about 7.25 degrees from the axis of Earth’s orbit. Hence, we see more of the Sun’s north pole in September of each year and the south pole in March.

How do the Various Objects Compare Against Earth?

The Earth we live on is a unique planet within our solar system containing water and air, and is where living things thrive. But, aside from those surface level differences, is our home really different from other planets and celestial objects?

In the table below, we compare other nearby celestial bodies with Earth, using ratios—this time, from smallest to largest:

Celestial BodyDiameter (ratio to Earth)Rotational Period (ratio to Earth)

Though Jupiter is around 11 times wider than Earth, its rotational period is only 0.4 times as long as our planet’s—meaning it rotates at a much faster speed.

On the other hand, Venus uses a slow and steady approach, taking 244 times longer to make one rotation (in comparison to background stars) when contrasted to Earth.

Continue Reading