Connect with us

Energy

Visualizing the Race for Clean Energy

Published

on

Visualizing the Race for Clean Energy

The Race for Clean Energy

To see the full resolution version of this infographic that has higher legibility, click here.

Last year, on a global basis, more net power generating capacity was added through renewable sources than via all other power sources combined.

Which countries are leading this charge, and what power sources are being adopted the fastest?

Today’s infographic comes to us Raconteur, and it breaks down various metrics around energy investment. The graphic looks at absolute and per capita power consumption by countries, as well as dollars being invested into each particular type of green energy.

Country Comparisons

The two countries that lead the pack in absolute terms are China and the United States. In 2016, China consumed the equivalent of 349.2 million tonnes of oil in renewable energy, while the U.S. was at 143 million tonnes.

However, these numbers are very skewed by the large populations of these countries. In percentage terms, China only gets 11.4% of its primary energy from renewables, while the U.S. gets 6.3% of its mix from sources like solar and wind.

On a per capita basis, major economies leading the world include countries like Norway, Canada, Sweden, Brazil, and Austria – all of these countries get about 30% or more of their primary energy from renewables. That said, it is also worth noting that hydropower makes up a large degree of the energy mixes for many of these places.

Clean Investments

2016 was a landmark year for clean energy, with net power capacity additions for renewables topping the list:

Power TypeNet Global Capacity Added (2016)
Renewable (excl. large hydro)138 GW
Coal54 GW
Gas37 GW
Large hydro15 GW
Nuclear10 GW
Other flexible capacity5 GW

Importantly, more green power is being added at lower costs. Below, you can see that the level of investment is actually falling, as utilities get more “bang for the buck” on new capacity added.

Here is the overall investment for each renewable category in 2016:

Renewable sourceGlobal New Investment (Billions)Change
Solar$113.7-34%
Wind$112.5-9%
Large hydro$23.2-48%
Biomass & waste-to-energy$6.80%
Small hydro$3.50%
Geothermal$2.7-37%
Biofuels$2.217%
Marine$0.2-7%

In 2016, investment in clean energy fell by 18% – however, 138 GW of new power capacity came online from renewable sources (excl. large hydro), which is 11 GW more than in the previous year.

If costs continue to fall, it will mean more accessible clean energy for any country that wants it – and cost efficiency will also make the race to add capacity via renewables much more meaningful and sustainable in the long term.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Automotive

6 Ways Hydrogen and Fuel Cells Can Help Transition to Clean Energy

Here are six reasons why hydrogen and fuel cells can be a fit for helping with the transition to a lower-emission energy mix.

Published

on

Hydrogen and fuel cells

While fossil fuels offer an easily transportable, affordable, and energy-dense fuel for everyday use, the burning of this fuel creates pollutants, which can concentrate in city centers degrading the quality of air and life for residents.

The world is looking for alternative ways to ensure the mobility of people and goods with different power sources, and electric vehicles have high potential to fill this need.

But did you know that not all electric vehicles produce their electricity in the same way?

Hydrogen: An Alternative Vision for the EV

The world obsesses over battery technology and manufacturers such as Tesla, but there is an alternative fuel that powers rocket ships and is road-ready. Hydrogen is set to become an important fuel in the clean energy mix of the future.

Today’s infographic comes from the Canadian Hydrogen and Fuel Cell Association (CHFCA) and it outlines the case for hydrogen.

6 Ways Hydrogen and Fuel Cells Can Help Transition to Clean Energy

Hydrogen Supply and Demand

Some scientists have made the argument that it was not hydrogen that caused the infamous Hindenburg to burst into flames. Instead, the powdered aluminum coating of the zeppelin, which provided its silver look, was the culprit. Essentially, the chemical compound coating the dirigibles was a crude form of rocket fuel.

Industry and business have safely used, stored, and transported hydrogen for 50 years, while hydrogen-powered electric vehicles have a proven safety record with over 10 million miles of operation. In fact, hydrogen has several properties that make it safer than fossil fuels:

  • 14 times lighter than air and disperses quickly
  • Flames have low radiant heat
  • Less combustible
  • Non-toxic

Since hydrogen is the most abundant chemical element in the universe, it can be produced almost anywhere with a variety of methods, including from fuels such as natural gas, oil, or coal, and through electrolysis. Fossil fuels can be treated with extreme temperatures to break their hydrocarbon bonds, releasing hydrogen as a byproduct. The latter method uses electricity to split water into hydrogen and oxygen.

Both methods produce hydrogen for storage, and later consumption in an electric fuel cell.

Fuel Cell or Battery?

Battery and hydrogen-powered vehicles have the same goal: to reduce the environmental impact from oil consumption. There are two ways to measure the environmental impact of vehicles, from “Well to Wheels” and from “Cradle to Grave”.

Well to wheels refers to the total emissions from the production of fuel to its use in everyday life. Meanwhile, cradle to grave includes the vehicle’s production, operation, and eventual destruction.

According to one study, both of these measurements show that hydrogen-powered fuel cells significantly reduce greenhouse gas emissions and air pollutants. For every kilometer a hydrogen-powered vehicle drives it produces only 2.7 grams per kilometer (g/km) of carbon dioxide while a battery electric vehicle produces 20 g/km.

During everyday use, both options offer zero emissions, high efficiency, an electric drive, and low noise, but hydrogen offers weight-saving advantages that battery-powered vehicles do not.

In one comparison, Toyota’s Mirai had a maximum driving range of 312 miles, 41% further than Tesla’s Model 3 220-mile range. The Mirai can refuel in minutes, while the Model 3 has to recharge in 8.5 hours for only a 45% charge at a specially configured quick charge station not widely available.

However, the world still lacks the significant infrastructure to make this hydrogen-fueled future possible.

Hydrogen Infrastructure

Large scale production delivers economic amounts of hydrogen. In order to achieve this scale, an extensive infrastructure of pipelines and fueling stations are required. However to build this, the world needs global coordination and action.

Countries around the world are laying the foundations for a hydrogen future. In 2017, CEOs from around the word formed the Hydrogen Council with the mission to accelerate the investment in hydrogen.

Globally, countries have announced plans to build 2,800 hydrogen refueling stations by 2025. German pipeline operators presented a plan to create a 1,200-kilometer grid by 2030 to transport hydrogen across the country, which would be the world’s largest in planning.

Fuel cell technology is road-ready with hydrogen infrastructure rapidly catching up. Hydrogen can deliver the power for a new clear energy era.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Energy

Visualizing America’s Energy Use, in One Giant Chart

This incredible flow diagram shows how U.S. energy use broke down in 2019, including by source and end sector.

Published

on

Visualizing America’s Energy Use, in One Giant Chart

Have you ever wondered where the country’s energy comes from, and how exactly it gets used?

Luckily, the Lawrence Livermore National Laboratory (LLNL) crunches the numbers every year, outputting an incredible flow diagram that covers the broad spectrum of U.S. energy use.

The 2019 version of this comprehensive diagram gives us an in-depth picture of the U.S. energy ecosystem, showing not only where energy originates by fuel source (i.e. wind, oil, natural gas, etc.) but also how it’s ultimately consumed by sector.

In Perspective: 2019 Energy Use

Below, we’ll use the unit of quads, with each quad worth 1 quadrillion BTUs, to compare data for the last five years of energy use in the United States. Each quad has roughly the same amount of energy as contained in 185 million barrels of crude oil.

YearEnergy ConsumptionChange (yoy)Fossil Fuels in Mix
2019100.2 quads-1.080.0%
2018101.2 quads+3.580.2%
201797.7 quads+0.480.0%
201697.3 quads+0.180.8%
201597.2 quads-1.181.6%

Interestingly, overall energy use in the U.S. actually decreased to 100.2 quads in 2019, similar to a decrease last seen in 2015.

It’s also worth noting that the percentage of fossil fuels used in the 2019 energy mix decreased by 0.2% from last year to make up 80.0% of the total. This effectively negates the small rise of fossil fuel usage that occurred in 2018.

Energy Use by Source

Which sources of energy are seeing more use, as a percentage of the total energy mix?

 20152016201720182019Change ('15-'19)
Oil36.3%36.9%37.1%36.5%36.6%+0.3%
Natural Gas29.0%29.3%28.7%30.6%32.0%+3.0%
Coal16.1%14.6%14.3%13.1%11.4%-4.7%
Nuclear8.6%8.7%8.6%8.3%8.4%-0.2%
Biomass4.8%4.9%5.0%5.1%5.0%+0.2%
Wind1.9%2.2%2.4%2.5%2.7%+0.8%
Hydro2.5%2.5%2.8%2.7%2.5%+0.0%
Solar0.5%0.6%0.8%0.9%1.0%+0.5%
Geothermal0.2%0.2%0.2%0.2%0.2%+0.0%

Since 2015, natural gas has grown from 29% to 32% of the U.S. energy mix — while coal’s role in the mix has dropped by 4.7%.

In these terms, it can be hard to see growth in renewables, but looking at the data in more absolute terms can tell a different story. For example, in 2015 solar added 0.532 quads of energy to the mix, while in 2019 it accounted for 1.04 quads — a 95% increase.

Energy Consumption

Finally, let’s take a look at where energy goes by end consumption, and whether or not this is evolving over time.

 20152016201720182019Change ('15-'19)
Residential15.6%15.2%14.7%15.7%15.7%+0.1%
Commercial12.1%12.5%12.3%12.4%12.4%+0.3%
Industrial33.9%33.8%34.5%34.6%34.8%+0.9%
Transportation38.4%38.5%38.5%37.3%37.1%-1.3%

Residential, commercial, and industrial sectors are all increasing their use of energy, while the transportation sector is seeing a drop in energy use — likely thanks to more fuel efficient cars, EVs, public transport, and other factors.

The COVID-19 Effect on Energy Use

The energy mix is incredibly difficult to change overnight, so over the years these flow diagrams created by the Lawrence Livermore National Laboratory (LLNL) have not changed much.

One exception to this will be in 2020, which has seen an unprecedented shutdown of the global economy. As a result, imagining the next iteration of this energy flow diagram is basically anybody’s guess.

We can likely all agree that it’ll include increased levels of energy consumption in households and shortfalls everywhere else, especially in the transportation sector. However, the total amount of energy used — and where it comes from — might be a significant deviation from past years.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
PredictIt The Stock Market For Politics

Subscribe

Join the 180,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular