Visualizing Copper's Role in the Transition to Clean Energy
Connect with us

Energy

Visualizing Copper’s Role in the Transition to Clean Energy

Published

on

A future powered by renewables is not in the distant horizon, but rather in its early hours.

This new dawn comes from a global awareness of the environmental impacts of the current energy mix, which relies heavily on fossil fuels and their associated greenhouse gas emissions.

Technologies such as wind, solar, and batteries offer renewable and clean alternatives and are leading the way for the transition to clean energy. However, as with every energy transition, there are not only new technologies, but also new material demands.

Copper: A Key Piece of the Puzzle

This energy transition will be mineral intensive and it will require metals such as nickel, lithium, and cobalt. However, one metal stands out as being particularly important, and that is copper.

Today’s infographic comes to us from the Copper Development Association and outlines the special role of copper in renewable power generation, energy storage, and electric vehicles.

Copper and the Clean Energy Transition

Why Copper?

The red metal has four key properties that make it ideal for the clean energy transition.

  1. Conductivity
  2. Ductility
  3. Efficiency
  4. Recyclability

It is these properties that make copper the critical material for wind and solar technology, energy storage, and electric vehicles.

It’s also why, according to ThinkCopper, the generation of electricity from solar and wind uses four to six times more copper than fossil fuel sources.

Copper in Wind

A three-megawatt wind turbine can contain up to 4.7 tons of copper with 53% of that demand coming from the cable and wiring, 24% from the turbine/power generation components, 4% from transformers, and 19% from turbine transformers.

The use of copper significantly increases when going offshore. That’s because onshore wind farms use approximately 7,766 lbs of copper per MW, while an offshore wind installation uses 21,068 lbs of copper per MW.

It is the cabling of the offshore wind farms to connect them to each other and to deliver the power that accounts for the bulk of the copper usage.

Copper in Solar

Solar power systems can contain approximately 5.5 tons of copper per MW. Copper is in the heat exchangers of solar thermal units as well as in the wiring and cabling that transmits the electricity in photovoltaic solar cells.

Navigant Research projects that 262 GW of new solar installations between 2018 and 2027 in North America will require 1.9 billion lbs of copper.

Copper in Energy Storage

There are many ways to store energy, but every method uses copper. For example, a lithium ion battery contains 440 lbs of copper per MW and a flow battery 540 lbs of copper per MW.

Copper wiring and cabling connects renewable power generation with energy storage, while the copper in the switches of transformers help to deliver power at the right voltage.

Across the United States, a total of 5,752 MW of energy capacity has been announced and commissioned.

Copper in Electric Vehicles

Copper is at the heart of the electric vehicle (EV). This is because EVs rely on copper for the motor coil that drives the engine.

The more electric the car, the more copper it needs; a car powered by an internal combustion engine contains roughly 48 lbs, a hybrid needs 88 lbs, and a battery electric vehicle uses 184 lbs.

Additionally, the cabling for charging stations of electric vehicles will be another source of copper demand.

The Copper Future

Advances in technologies create new material demands.

Therefore, it shouldn’t be surprising that the transition to renewables is going to create demand for many minerals – and copper is going to be a critical mineral for the new era of energy.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the Scale of Global Fossil Fuel Production

How much oil, coal, and natural gas do we extract each year? See the scale of annual fossil fuel production in perspective.

Published

on

The Scale of Global Fossil Fuel Production

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Fossil fuels have been our predominant source of energy for over a century, and the world still extracts and consumes a colossal amount of coal, oil, and gas every year.

This infographic visualizes the volume of global fossil fuel production in 2021 using data from BP’s Statistical Review of World Energy.

The Facts on Fossil Fuels

In 2021, the world produced around 8 billion tonnes of coal, 4 billion tonnes of oil, and over 4 trillion cubic meters of natural gas.

Most of the coal is used to generate electricity for our homes and offices and has a key role in steel production. Similarly, natural gas is a large source of electricity and heat for industries and buildings. Oil is primarily used by the transportation sector, in addition to petrochemical manufacturing, heating, and other end uses.

Here’s a full breakdown of coal, oil, and gas production by country in 2021.

Coal Production

If all the coal produced in 2021 were arranged in a cube, it would measure 2,141 meters (2.1km) on each side—more than 2.5 times the height of the world’s tallest building.

China produced 50% or more than four billion tonnes of the world’s coal in 2021. It’s also the largest consumer of coal, accounting for 54% of coal consumption in 2021.

Rank Country2021 Coal Production
(million tonnes)
% of Total
#1🇨🇳 China 4,126.050%
#2🇮🇳 India 811.310%
#3🇮🇩 Indonesia 614.08%
#4🇺🇸 U.S. 524.46%
#5🇦🇺 Australia 478.66%
#6🇷🇺 Russia 433.75%
#7🇿🇦 South Africa 234.53%
#8🇩🇪 Germany 126.02%
#9🇰🇿 Kazakhstan 115.71%
#10🇵🇱 Poland 107.61%
🌍 Other 600.97%
Total8,172.6100%

India is both the second largest producer and consumer of coal. Meanwhile, Indonesia is the world’s largest coal exporter, followed by Australia.

In the West, U.S. coal production was down 47% as compared to 2011 levels, and the descent is likely to continue with the clean energy transition.

Oil Production

In 2021, the United States, Russia, and Saudi Arabia were the three largest crude oil producers, respectively.

Rank Country2021 Oil Production
(million tonnes)
% of Total
#1🇺🇸 U.S. 711.117%
#2🇷🇺 Russia 536.413%
#3🇸🇦 Saudi Arabia 515.012%
#4🇨🇦 Canada 267.16%
#5🇮🇶 Iraq 200.85%
#6🇨🇳 China 198.95%
#7🇮🇷 Iran 167.74%
#8🇦🇪 UAE 164.44%
#9 🇧🇷 Brazil156.84%
#10🇰🇼 Kuwait 131.13%
🌍 Other 1172.028%
Total4221.4100%

OPEC countries, including Saudi Arabia, made up the largest share of production at 35% or 1.5 billion tonnes of oil.

U.S. oil production has seen significant growth since 2010. In 2021, the U.S. extracted 711 million tonnes of oil, more than double the 333 million tonnes produced in 2010.

Natural Gas Production

The world produced 4,036 billion cubic meters of natural gas in 2021. The above graphic converts that into an equivalent of seven billion cubic meters of liquefied natural gas (LNG) to visualize it on the same scale as oil and gas.

Here are the top 10 producers of natural gas in 2021:

Rank Country2021 Natural Gas Production
(billion m3)
% of Total
#1🇺🇸 U.S. 934.223%
#2🇷🇺 Russia 701.717%
#3🇮🇷 Iran 256.76%
#4🇨🇳 China 209.25%
#5🇶🇦 Qatar 177.04%
#6🇨🇦 Canada 172.34%
#7🇦🇺 Australia 147.24%
#8🇸🇦 Saudi Arabia 117.33%
#9🇳🇴 Norway 114.33%
#10🇩🇿 Algeria 100.82%
🌍 Other 1106.327%
Total4,036.9100%

The U.S. was the largest producer, with Texas and Pennsylvania accounting for 47% of its gas production. The U.S. electric power and industrial sectors account for around one-third of domestic natural gas consumption.

Russia, the next-largest producer, was the biggest exporter of gas in 2021. It exported an estimated 210 billion cubic meters of natural gas via pipelines to Europe and China. Around 80% of Russian natural gas comes from operations in the Arctic region.

Continue Reading

Subscribe

Popular