Infographic: Lithium is the Fuel of the Green Revolution
Connect with us

Energy

Lithium: The Fuel of the Green Revolution

Published

on

Lithium: The Fuel of the Green Revolution

Lithium: The Fuel of the Green Revolution

The world is shifting greener.

And while people have always wanted electric cars and inexpensive solar power, the reality is that until recently, battery technology just wasn’t good enough to store energy on an economical or practical basis.

Things have changed, and the green revolution has been kickstarted by battery power. The commercialization of the lithium-ion battery has solved a crucial green energy problem for two major reasons that can be related back to the properties of lithium:

1) Lithium has extremely high electrochemical potential, and so do lithium-ion cells:

Battery cellTypical Voltage
Lithium-ion (Cobalt)3.6V
Lead Acid2.0V
NiMH1.2V
NiCd1.2V

This means one lithium-ion cell can do more – making it much more efficient to use in everything from electronics to energy storage.

2) Lithium is also the lightest metal on the periodic table. Batteries need to be as light as possible, especially in electric cars.

How Lithium Gets Used

2001
Many years ago, lithium was used chiefly for a variety of industrial purposes. Major sources of lithium demand included ceramics, glass, aluminum production, lubricants, and as a catalyst for rubber production.

2015
In modern times, with the commercialization of the lithium-ion, batteries are now the major source of demand for lithium at 39%.

2025
According to a report by Deutsche Bank, in 2025 the battery market for lithium alone will be more than 2x bigger than the total lithium market today.

About 70% of all lithium will go to electric vehicles, e-bikes, traditional batteries, and energy storage, making it the uncontested fuel of the green revolution.

Major Lithium Drivers

Lithium-ion battery demand is primarily driven by rapid growth in the electric vehicle market, which is expected to make up 35% of all vehicle demand by 2040.

But renewable energy storage also plays a role in driving lithium demand. With solar and wind energy being installed at a rapid pace, that means more batteries must be procured to store this energy. This can be done for a home system with a product like Tesla’s Powerwall 2.0, and it is being done on a utility scale as well.

Two Types of Lithium

Prices for lithium have skyrocketed in the last two years – and it is worth knowing the two different types of lithium used by the market.

Lithium carbonate:
This is the first chemical in the production chain, and as a result, sells for less than lithium hydroxide. It can be used as cathode material in some batteries, such as the Nissan Leaf, where it is used in a LMO with NMC formulation (Lithium manganese oxide / nickel manganese cobalt oxide chemistries)

Lithium hydroxide:
This is a by-product of lithium carbonate, created by a metathesis reaction with calcium hydroxide. It can be used to produce cathode material more efficiently and is actually necessary for some types of cathodes. It’s used in the Tesla Powerwall and Model S, for example.

Lithium Mining

There are two basic ways to extract lithium: from brine or from hard rock. The latter mainly consists of spodumene production.

Brine deposits represent about 66% of global lithium resources, and are found mainly in the salt flats of Chile, Argentina, Bolivia, China, and Tibet.

The most famous area for lithium is known as the Lithium Triangle, located on the border between Chile, Argentina, and Bolivia. Salar de Atacama, the world’s third largest salt flat, resides on the Chilean side, and contains about 50% of global reserves.

The largest lithium producers in 2015 were Chile (37%) and Australia (33%). Argentina is the only other double-digit producer at 11%.

Lithium is Fueling the Green Revolution

Here’s the estimated amount of lithium that can be found in everyday items using lithium-ion batteries:

Tesla Model S: 51kg
Electric Vehicles: 10-63kg
Tesla Powerwall 2.0: 10kg
Hybrids: 0.8kg to 2.0kg
Power tool batteries: 40-60g
Laptops: 30-40g
Tablets: 20-30g
Mobile phones: 2-3g

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the Scale of Global Fossil Fuel Production

How much oil, coal, and natural gas do we extract each year? See the scale of annual fossil fuel production in perspective.

Published

on

The Scale of Global Fossil Fuel Production

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Fossil fuels have been our predominant source of energy for over a century, and the world still extracts and consumes a colossal amount of coal, oil, and gas every year.

This infographic visualizes the volume of global fossil fuel production in 2021 using data from BP’s Statistical Review of World Energy.

The Facts on Fossil Fuels

In 2021, the world produced around 8 billion tonnes of coal, 4 billion tonnes of oil, and over 4 trillion cubic meters of natural gas.

Most of the coal is used to generate electricity for our homes and offices and has a key role in steel production. Similarly, natural gas is a large source of electricity and heat for industries and buildings. Oil is primarily used by the transportation sector, in addition to petrochemical manufacturing, heating, and other end uses.

Here’s a full breakdown of coal, oil, and gas production by country in 2021.

Coal Production

If all the coal produced in 2021 were arranged in a cube, it would measure 2,141 meters (2.1km) on each side—more than 2.5 times the height of the world’s tallest building.

China produced 50% or more than four billion tonnes of the world’s coal in 2021. It’s also the largest consumer of coal, accounting for 54% of coal consumption in 2021.

Rank Country2021 Coal Production
(million tonnes)
% of Total
#1🇨🇳 China 4,126.050%
#2🇮🇳 India 811.310%
#3🇮🇩 Indonesia 614.08%
#4🇺🇸 U.S. 524.46%
#5🇦🇺 Australia 478.66%
#6🇷🇺 Russia 433.75%
#7🇿🇦 South Africa 234.53%
#8🇩🇪 Germany 126.02%
#9🇰🇿 Kazakhstan 115.71%
#10🇵🇱 Poland 107.61%
🌍 Other 600.97%
Total8,172.6100%

India is both the second largest producer and consumer of coal. Meanwhile, Indonesia is the world’s largest coal exporter, followed by Australia.

In the West, U.S. coal production was down 47% as compared to 2011 levels, and the descent is likely to continue with the clean energy transition.

Oil Production

In 2021, the United States, Russia, and Saudi Arabia were the three largest crude oil producers, respectively.

Rank Country2021 Oil Production
(million tonnes)
% of Total
#1🇺🇸 U.S. 711.117%
#2🇷🇺 Russia 536.413%
#3🇸🇦 Saudi Arabia 515.012%
#4🇨🇦 Canada 267.16%
#5🇮🇶 Iraq 200.85%
#6🇨🇳 China 198.95%
#7🇮🇷 Iran 167.74%
#8🇦🇪 UAE 164.44%
#9 🇧🇷 Brazil156.84%
#10🇰🇼 Kuwait 131.13%
🌍 Other 1172.028%
Total4221.4100%

OPEC countries, including Saudi Arabia, made up the largest share of production at 35% or 1.5 billion tonnes of oil.

U.S. oil production has seen significant growth since 2010. In 2021, the U.S. extracted 711 million tonnes of oil, more than double the 333 million tonnes produced in 2010.

Natural Gas Production

The world produced 4,036 billion cubic meters of natural gas in 2021. The above graphic converts that into an equivalent of seven billion cubic meters of liquefied natural gas (LNG) to visualize it on the same scale as oil and gas.

Here are the top 10 producers of natural gas in 2021:

Rank Country2021 Natural Gas Production
(billion m3)
% of Total
#1🇺🇸 U.S. 934.223%
#2🇷🇺 Russia 701.717%
#3🇮🇷 Iran 256.76%
#4🇨🇳 China 209.25%
#5🇶🇦 Qatar 177.04%
#6🇨🇦 Canada 172.34%
#7🇦🇺 Australia 147.24%
#8🇸🇦 Saudi Arabia 117.33%
#9🇳🇴 Norway 114.33%
#10🇩🇿 Algeria 100.82%
🌍 Other 1106.327%
Total4,036.9100%

The U.S. was the largest producer, with Texas and Pennsylvania accounting for 47% of its gas production. The U.S. electric power and industrial sectors account for around one-third of domestic natural gas consumption.

Russia, the next-largest producer, was the biggest exporter of gas in 2021. It exported an estimated 210 billion cubic meters of natural gas via pipelines to Europe and China. Around 80% of Russian natural gas comes from operations in the Arctic region.

Continue Reading

Subscribe

Popular