Connect with us

Energy

Visualizing the Global Transition to Green Energy

Published

on

Green Energy transition

Visualizing The Global Transition to Green Energy

A fully green future could be closer than you think. With each passing year, the steadily declining price of renewable energy makes it increasingly competitive against fossil fuels.

Today’s infographic from Raconteur breaks down the material shift towards renewable energy, and where in the world it’s taking place.

Time to go green

A recent United Nations report estimates that renewables must make up 70% to 85% of electricity by 2050 to combat the dire effects of climate change.

The good news? Embracing renewable energy is becoming easier on the wallet. Most renewable energy sources are becoming cheaper and quicker to produce, and it’s speeding up widespread adoption.

Cost of electricity per energy source ($ per KWh)20102017
Concentrating solar power$0.33$0.22
Offshore wind$0.17$0.14
Solar photovoltaic$0.36$0.10
Biomass$0.07$0.07
Geothermal$0.05$0.07
Onshore wind$0.08$0.06
Hydro$0.04$0.05

The price of solar photovoltaic cells are projected to dip dramatically over this seven-year period, as solar panel infrastructure moves away from being an experimental technology, and into a trusted energy source easily replicated at scale. Solar also received the most new investment by energy type in 2017, up 18% from the previous year.

Of course, it won’t happen overnight. Even as the world continues to electrify, coal will still make up almost one-third of the world’s energy mix in 2040, while renewables will only be at 25%.

Nevertheless, concentrated efforts to curb our reliance on coal are signals that the fossil fuel is on its way out, and new investment in green energy sources is on the rise in most regions.

The Renewables Race

It’s perhaps not surprising that China is leading the change in renewable growth. The nation tops the list of spenders, spending more on green energy than the United States and Europe combined.

New Investment by Region2016 ($ billion)2017 ($ billion)% Change
China$96.9$126.631%
Europe$64.1$40.9-36%
United States$43.1$40.5-6%
Other Asia and Oceania$35.7$31.4-12%
Other Americas$6$13.4124%
Middle East & Africa$9$10.111%
India$13.7$10.9-20%
Brazil$5.6$68%
Total$274$279.82%

In places where a consistent and reliable source of energy is hard to come by, people are looking to clean energy as a way to leapfrog ahead of using the carbon-intensive electricity grid entirely.

Take Ethiopia for example: the $4 billion Grand Ethiopian Renaissance Dam (GERD) project along the Nile River will help meet the area’s rising energy demands. Once completed, it will be the largest dam on the continent and generate around 6,450 MW of power.

This trifecta of innovation, investment, and falling costs could be the answer to bolstering renewable energy infrastructure for decades to come – and it will be interesting to see the ultimate pace at which green energy supply comes online, and what that means for the world.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Energy

Charting the Flows of Energy Consumption by Source and Country (1969-2018)

For the last 50 years, fossil fuels have dominated energy consumption. This chart looks at how the energy mix is changing in over 60+ countries.

Published

on

Energy consumption by source and country

Charting Energy Consumption by Source and Country

View the interactive version of this post by clicking here.

Over the last 50 years, the world has seen a colossal increase in energy consumption—and with the ongoing transition to renewable energy, it’s interesting to look at how these sources of energy have been evolving over time.

While some countries continue to rely heavily on fossil fuels like oil, coal, and natural gas, others have integrated alternative energy sources into their mix.

This visualization comes to us from Brian Moore and it charts the evolution of energy consumption in the 64 countries that have data available for all of the last 50 years.

Tera-What? The Most Prominent Sources of Energy (2009-2018)

First, let’s take a look at which sources have produced the most energy over the last decade of data. Energy consumption is measured in terawatt-hours (TWh)—a unit of energy equal to outputting one trillion watts for an hour.

Energy Source% of Total Energy Consumption
(2009-2018)
Sum of Total Energy
(2009-2018) (TWh)
Oil34.3%509,800
Coal29.2%434,300
Gas22.8%339,300
Hydropower6.7%99,200
Nuclear4.6%68,800
Wind1.3%18,700
Geothermal/Biomass/Other0.9%12,700
Solar0.4%5,700
Total100.0%1,389,300 TWh

Looking at this data, it’s clear that fossil fuels have been used much more than alternative sources. A deeper dive into the topic helps explain why.

Fossil Fuels: What the Data Shows

As the predominant source of energy, fossil fuels collectively accounted for a massive 86.2% of total energy consumption over 2009-2018, or roughly 1.2 million TWh. If you’re wondering, that’s enough to power the equivalent of 109 billion U.S. homes with electricity for a year.

Among fossil fuel sources, oil emerges as the clear leader, responsible for 34.3% or 509,800 TWh of energy consumption over 2009-2018. Apart from being the primary fuel for transportation throughout history, oil remains relatively affordable—making it an easy choice for producers and consumers alike.

Closely following oil is coal, which countries rely on for its abundance, low costs, and low infrastructure requirements. Over the last decade of data, 29.2% of total energy came from coal, amounting to a substantial 434,300 TWh.

As a cleaner alternative to coal, natural gas has increased in popularity. Gas accounted for 22.8% or 339,300 TWh of energy consumed between 2009-2018, mainly attributed to its ample supply and affordability.

What About Renewables?

Only 13.8% of energy consumption over 2009-2018 came from renewable or alternative sources of energy, and hydropower accounts for nearly half of it. Why has the use of environmentally-friendly energy sources been so low?

Setting up alternative power plants—especially wind, solar, and nuclear—requires significant capital investment, while facing competition from cheaper and more convenient fossil fuels. The barriers to adopting renewable energy have been weakening, but still remain quite high for low-income countries.

Wind and solar energy were responsible for a mere 1.7% of energy consumption. Compared to fossil fuels like oil and coal, this percentage seems even more minuscule than it does on its own—mainly attributable to the high costs traditionally associated with wind and solar energy.

The Top 10 Countries Relying on Fossil Fuels

Fossil fuels have been the predominant source of energy over the years. After all, 43 of these 64 countries sourced more than 80% of their energy from fossil fuels over 2009-2018.

Here are the ones that come out on top:

Country% of Energy Consumed From Fossil Fuels
(2009-2018)
Most Used Fossil Fuel
(2009-2018)
Oman 🇴🇲100%Gas
Saudi Arabia 🇸🇦100%Oil
Trinidad and Tobago 🇹🇹100%Gas
Kuwait 🇰🇼100%Oil
Qatar 🇶🇦99.9%Gas
United Arab Emirates 🇦🇪99.9%Gas
Hong Kong 🇭🇰99.9%Oil
Algeria 🇩🇿98.8%Gas
Singapore 🇸🇬98.8%Oil
Israel 🇮🇱98.1%Oil

Although it is startling to see that several countries were 100% reliant on fossil fuels, it comes as no surprise that these are countries with abundant reserves of oil or natural gas. Not only are fossil fuels central to certain economies in Middle Eastern and North African (MENA), but they also remain highly affordable for consumers in these places.

On a broader scale, developing and low-income countries are heavily dependent on fossil fuels such as coal for access to cheap electricity and ease of installation.

The Top 10 Countries Using Alternative Energy Sources

The transition to alternative energy sources has been welcomed by many countries, but only a few have prioritized its adoption in the energy mix. Here’s a look at the top 10:

Country% of Energy From Alternative Sources
(2009-2018)
Most Used Alternative Energy Source
(2009-2018)
Iceland 🇮🇸81.6%Hydropower
Norway 🇳🇴67.5%Hydropower
Sweden 🇸🇪65.3%Hydropower
Switzerland 🇨🇭50.5%Hydropower
France 🇫🇷47.0%Nuclear
Finland 🇫🇮39.5%Nuclear
New Zealand 🇳🇿37.2%Hydropower
Brazil 🇧🇷37.2%Hydropower
Canada 🇨🇦34.8%Hydropower
Austria 🇦🇹31.7%Hydropower

Iceland is the only country to have sourced over 80% of its energy from alternative sources over 2009-2018. In general, developed European countries are leading the charge—with Iceland, Norway, Sweden, Switzerland, and France making the top five.

The dominance of hydropower is notable, and so is the lack of wind and solar energy sources. Denmark had the highest percentage of wind energy in its mix, with 14.5%, whereas Italy had the highest percentage of solar, with just 2.4%.

It should be kept in mind that this percentage does not account for population differences. For example, although Italy boasted the highest percentage of solar in its energy mix with 2.4%, China consumed the most amount of energy from solar sources—despite it accounting for only 0.3% of total Chinese energy consumption.

Nevertheless, the costs of solar and wind energy have been falling continuously, and the potential for growth in the renewable energy sector is higher than ever.

The Transition to Renewables: Are We On Track?

Since the Industrial Revolution, fossil fuels have been the primary source of energy worldwide. More recently, the use of renewable energy sources has increased, but not substantially enough.

This predominant reliance on fossil fuels is not doing the transition to renewable energy any favors, but it shines a light on the massive untapped potential for alternative energies, especially in the developing world.

With the prices of renewable energy at record lows and increasing investment flows, the next decade will be a defining one for the global transition to clean energy.

Correction: A modified version of Brian Moore’s visualization was previous published here. We’ve since updated it to the original design.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Energy

Mapped: The World’s Nuclear Reactor Landscape

Which countries are turning to nuclear energy, and which are turning away? Mapping and breaking down the world’s nuclear reactor landscape.

Published

on

The World’s Changing Nuclear Reactor Landscape

View a more detailed version of the above map by clicking here

Following the 2011 Fukushima nuclear disaster in Japan, the most severe nuclear accident since Chernobyl, many nations reiterated their intent to wean off the energy source.

However, this sentiment is anything but universal—in many other regions of the world, nuclear power is still ramping up, and it’s expected to be a key energy source for decades to come.

Using data from the Power Reactor Information System, maintained by the International Atomic Energy Agency, the map above gives a comprehensive look at where nuclear reactors are subsiding, and where future capacity will reside.

Increasing Global Nuclear Use

Despite a dip in total capacity and active reactors last year, nuclear power still generated around 10% of the world’s electricity in 2019.

Global Nuclear Reactors and Electrical Capacity

Part of the increased capacity came as Japan restarted some plants and European countries looked to replace aging reactors. But most of the growth is driven by new reactors coming online in Asia and the Middle East.

China is soon to have more than 50 nuclear reactors, while India is set to become a top-ten producer once construction on new reactors is complete.

Asia's Growing Nuclear Footprint

Decreasing Use in Western Europe and North America

The slight downtrend from 450 operating reactors in 2018 to 443 in 2019 was the result of continued shutdowns in Europe and North America. Home to the majority of the world’s reactors, the two continents also have the oldest reactors, with many being retired.

At the same time, European countries are leading the charge in reducing dependency on the energy source. Germany has pledged to close all nuclear plants by 2022, and Italy has already become the first country to completely shut down their plants.

Despite leading in shutdowns, Europe still emerges as the most nuclear-reliant region for a majority of electricity production and consumption.

world-nuclear-landscape-supplemental-3

In addition, some countries are starting to reassess nuclear energy as a means of fighting climate change. Reactors don’t produce greenhouse gases during operation, and are more efficient (and safer) than wind and solar per unit of electricity.

Facing steep emission reduction requirements, a variety of countries are looking to expand nuclear capacity or to begin planning for their first reactors.

A New Generation of Nuclear Reactors?

For those parties interested in the benefits of nuclear power, past accidents have also led towards a push for innovation in the field. That includes studies of miniature nuclear reactors that are easier to manage, as well as full-size reactors with robust redundancy measures that won’t physically melt down.

Additionally, some reactors are being designed with the intention of utilizing accumulated nuclear waste—a byproduct of nuclear energy and weapon production that often had to be stored indefinitely—as a fuel source.

With some regions aiming to reduce reliance on nuclear power, and others starting to embrace it, the landscape is certain to change.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Advert to view the Corvus Gold Company Spotlight

Subscribe

Join the 200,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular