Energy
Visualizing the Uranium Mining Industry in 3 Charts
When uranium was discovered in 1789 by Martin Heinrich Klaproth, it’s likely the German chemist didn’t know how important the element would become to human life.
Used minimally in glazing and ceramics, uranium was originally mined as a byproduct of producing radium until the late 1930s. However, the discovery of nuclear fission, and the potential promise of nuclear power, changed everything.
What’s the current state of the uranium mining industry? This series of charts from Truman Du highlights production and the use of uranium using 2021 data from the World Nuclear Association (WNA) and Our World in Data.
Who are the Biggest Uranium Miners in the World?
Most of the world’s biggest uranium suppliers are based in countries with the largest uranium deposits, like Australia, Kazakhstan, and Canada.
The largest of these companies is Kazatomprom, a Kazakhstani state-owned company that produced 25% of the world’s new uranium supply in 2021.
As seen in the above chart, 94% of the roughly 48,000 tonnes of uranium mined globally in 2021 came from just 13 companies.
Rank | Company | 2021 Uranium Production (tonnes) | Percent of Total |
---|---|---|---|
1 | 🇰🇿 Kazatomprom | 11,858 | 25% |
2 | 🇫🇷 Orano | 4,541 | 9% |
3 | 🇷🇺 Uranium One | 4,514 | 9% |
4 | 🇨🇦 Cameco | 4,397 | 9% |
5 | 🇨🇳 CGN | 4,112 | 9% |
6 | 🇺🇿 Navoi Mining | 3,500 | 7% |
7 | 🇨🇳 CNNC | 3,562 | 7% |
8 | 🇷🇺 ARMZ | 2,635 | 5% |
9 | 🇦🇺 General Atomics/Quasar | 2,241 | 5% |
10 | 🇦🇺 BHP | 1,922 | 4% |
11 | 🇬🇧 Energy Asia | 900 | 2% |
12 | 🇳🇪 Sopamin | 809 | 2% |
13 | 🇺🇦 VostGok | 455 | 1% |
14 | Other | 2,886 | 6% |
Total | 48,332 | 100% |
France’s Orano, another state-owned company, was the world’s second largest producer of uranium at 4,541 tonnes.
Companies rounding out the top five all had similar uranium production numbers to Orano, each contributing around 9% of the global total. Those include Uranium One from Russia, Cameco from Canada, and CGN in China.
Where are the Largest Uranium Mines Found?
The majority of uranium deposits around the world are found in 16 countries with Australia, Kazakhstan, and Canada accounting for for nearly 40% of recoverable uranium reserves.
But having large reserves doesn’t necessarily translate to uranium production numbers. For example, though Australia has the biggest single deposit of uranium (Olympic Dam) and the largest reserves overall, the country ranks fourth in uranium supplied, coming in at 9%.
Here are the top 10 uranium mines in the world, accounting for 53% of the world’s supply.
Of the largest mines in the world, four are found in Kazakhstan. Altogether, uranium mined in Kazakhstan accounted for 45% of the world’s uranium supply in 2021.
Uranium Mine | Country | Main Owner | 2021 Production |
---|---|---|---|
Cigar Lake | 🇨🇦 Canada | Cameco/Orano | 4,693t |
Inkai 1-3 | 🇰🇿 Kazakhstan | Kazaktomprom/Cameco | 3,449t |
Husab | 🇳🇦 Namibia | Swakop Uranium (CGN) | 3,309t |
Karatau (Budenovskoye 2) | 🇰🇿 Kazakhstan | Uranium One/Kazatomprom | 2,561t |
Rössing | 🇳🇦 Namibia | CNNC | 2,444t |
Four Mile | 🇦🇺 Australia | Quasar | 2,241t |
SOMAIR | 🇳🇪 Niger | Orano | 1,996t |
Olympic Dam | 🇦🇺 Australia | BHP Billiton | 1,922t |
Central Mynkuduk | 🇰🇿 Kazakhstan | Ortalyk | 1,579t |
Kharasan 1 | 🇰🇿 Kazakhstan | Kazatomprom/Uranium One | 1,579t |
Namibia, which has two of the five largest uranium mines in operation, is the second largest supplier of uranium by country, at 12%, followed by Canada at 10%.
Interestingly, the owners of these mines are not necessarily local. For example, France’s Orano operates mines in Canada and Niger. Russia’s Uranium One operates mines in Kazakhstan, the U.S., and Tanzania. China’s CGN owns mines in Namibia.
And despite the African continent holding a sizable amount of uranium reserves, no African company placed in the top 10 biggest companies by production. Sopamin from Niger was the highest ranked at #12 with 809 tonnes mined.
Uranium Mining and Nuclear Energy
Uranium mining has changed drastically since the first few nuclear power plants came online in the 1950s.
For 30 years, uranium production grew steadily due to both increasing demand for nuclear energy and expanding nuclear arsenals, eventually peaking at 69,692 tonnes mined in 1980 at the height of the Cold War.
Nuclear energy production (measured in terawatt-hours) also rose consistently until the 21st century, peaking in 2001 when it contributed nearly 7% to the world’s energy supply. But in the years following, it started to drop and flatline.
By 2021, nuclear energy had fallen to 4.3% of global energy production. Several nuclear accidents—Chernobyl, Three Mile Island, and Fukushima—contributed to turning sentiment against nuclear energy.
Year | Nuclear Energy Production | % of Total Energy |
---|---|---|
1965 | 72 TWh | 0.2% |
1966 | 98 TWh | 0.2% |
1967 | 116 TWh | 0.2% |
1968 | 148 TWh | 0.3% |
1969 | 175 TWh | 0.3% |
1970 | 224 TWh | 0.4% |
1971 | 311 TWh | 0.5% |
1972 | 432 TWh | 0.7% |
1973 | 579 TWh | 0.9% |
1974 | 756 TWh | 1.1% |
1975 | 1,049 TWh | 1.6% |
1976 | 1,228 TWh | 1.7% |
1977 | 1,528 TWh | 2.1% |
1978 | 1,776 TWh | 2.3% |
1979 | 1,847 TWh | 2.4% |
1980 | 2,020 TWh | 2.6% |
1981 | 2,386 TWh | 3.1% |
1982 | 2,588 TWh | 3.4% |
1983 | 2,933 TWh | 3.7% |
1984 | 3,560 TWh | 4.3% |
1985 | 4,225 TWh | 5% |
1986 | 4,525 TWh | 5.3% |
1987 | 4,922 TWh | 5.5% |
1988 | 5,366 TWh | 5.8% |
1989 | 5,519 TWh | 5.8% |
1990 | 5,676 TWh | 5.9% |
1991 | 5,948 TWh | 6.2% |
1992 | 5,993 TWh | 6.2% |
1993 | 6,199 TWh | 6.4% |
1994 | 6,316 TWh | 6.4% |
1995 | 6,590 TWh | 6.5% |
1996 | 6,829 TWh | 6.6% |
1997 | 6,782 TWh | 6.5% |
1998 | 6,899 TWh | 6.5% |
1999 | 7,162 TWh | 6.7% |
2000 | 7,323 TWh | 6.6% |
2001 | 7,481 TWh | 6.7% |
2002 | 7,552 TWh | 6.6% |
2003 | 7,351 TWh | 6.2% |
2004 | 7,636 TWh | 6.2% |
2005 | 7,608 TWh | 6% |
2006 | 7,654 TWh | 5.8% |
2007 | 7,452 TWh | 5.5% |
2008 | 7,382 TWh | 5.4% |
2009 | 7,233 TWh | 5.4% |
2010 | 7,374 TWh | 5.2% |
2011 | 7,022 TWh | 4.9% |
2012 | 6,501 TWh | 4.4% |
2013 | 6,513 TWh | 4.4% |
2014 | 6,607 TWh | 4.4% |
2015 | 6,656 TWh | 4.4% |
2016 | 6,715 TWh | 4.3% |
2017 | 6,735 TWh | 4.3% |
2018 | 6,856 TWh | 4.2% |
2019 | 7,073 TWh | 4.3% |
2020 | 6,789 TWh | 4.3% |
2021 | 7,031 TWh | 4.3% |
More recently, a return to nuclear energy has gained some support as countries push for transitions to cleaner energy, since nuclear power generates no direct carbon emissions.
What’s Next for Nuclear Energy?
Nuclear remains one of the least harmful sources of energy, and some countries are pursuing advancements in nuclear tech to fight climate change.
Small, modular nuclear reactors are one of the current proposed solutions to both bring down costs and reduce construction time of nuclear power plants. The benefits include smaller capital investments and location flexibility by trading off energy generation capacity.
With countries having to deal with aging nuclear reactors and climate change at the same time, replacements need to be considered. Will they come in the form of new nuclear power and uranium mining, or alternative sources of energy?

This article was published as a part of Visual Capitalist's Creator Program, which features data-driven visuals from some of our favorite Creators around the world.
Maps
Mapped: Renewable Energy and Battery Installations in the U.S. in 2023
This graphic describes new U.S. renewable energy installations by state along with nameplate capacity, planned to come online in 2023.

Renewable and Battery Installations in the U.S. in 2023
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on real assets and resource megatrends each week.
Renewable energy, in particular solar power, is set to shine in 2023. This year, the U.S. plans to get over 80% of its new energy installations from sources like battery, solar, and wind.
The above map uses data from EIA to highlight planned U.S. renewable energy and battery storage installations by state for 2023.
Texas and California Leading in Renewable Energy
Nearly every state in the U.S. has plans to produce new clean energy in 2023, but it’s not a surprise to see the two most populous states in the lead of the pack.
Even though the majority of its power comes from natural gas, Texas currently leads the U.S. in planned renewable energy installations. The state also has plans to power nearly 900,000 homes using new wind energy.
California is second, which could be partially attributable to the passing of Title 24, an energy code that makes it compulsory for new buildings to have the equipment necessary to allow the easy installation of solar panels, battery storage, and EV charging.
New solar power in the U.S. isn’t just coming from places like Texas and California. In 2023, Ohio will add 1,917 MW of new nameplate solar capacity, with Nevada and Colorado not far behind.
Top 10 States | Battery (MW) | Solar (MW) | Wind (MW) | Total (MW) |
---|---|---|---|---|
Texas | 1,981 | 6,462 | 1,941 | 10,385 |
California | 4,555 | 4,293 | 123 | 8,970 |
Nevada | 678 | 1,596 | 0 | 2,274 |
Ohio | 12 | 1,917 | 5 | 1,934 |
Colorado | 230 | 1,187 | 200 | 1,617 |
New York | 58 | 509 | 559 | 1,125 |
Wisconsin | 4 | 939 | 92 | 1,034 |
Florida | 3 | 978 | 0 | 980 |
Kansas | 0 | 0 | 843 | 843 |
Illinois | 0 | 363 | 477 | 840 |
The state of New York is also looking to become one of the nation’s leading renewable energy providers. The New York State Energy Research & Development Authority (NYSERDA) is making real strides towards this objective with 11% of the nation’s new wind power projects expected to come online in 2023.
According to the data, New Hampshire is the only state in the U.S. that has no new utility-scale renewable energy installations planned for 2023. However, the state does have plans for a massive hydroelectric plant that should come online in 2024.
Decarbonizing Energy
Renewable energy is considered essential to reduce global warming and CO2 emissions.
In line with the efforts by each state to build new renewable installations, the Biden administration has set a goal of achieving a carbon pollution-free power sector by 2035 and a net zero emissions economy by no later than 2050.
The EIA forecasts the share of U.S. electricity generation from renewable sources rising from 22% in 2022 to 23% in 2023 and to 26% in 2024.
-
Technology4 weeks ago
Visualizing Global Attitudes Towards AI
-
Datastream2 weeks ago
Charted: Public Trust in the Federal Reserve
-
Visual Capitalist4 weeks ago
Calling All Data Storytellers to Enter our Creator Program Challenge
-
AI2 weeks ago
Ranked: The World’s Top 25 Websites in 2023
-
Cities4 weeks ago
Ranked: Top 10 Cities Where International Travelers Spend the Most
-
AI2 weeks ago
Visualizing the Top U.S. States for AI Jobs
-
VC+4 weeks ago
Coming Soon: Here’s What’s Coming to VC+ Next
-
Maps1 week ago
Mapped: Renewable Energy and Battery Installations in the U.S. in 2023