Visualizing China's Dominance in Rare Earth Metals
Connect with us

Mining

Visualizing China’s Dominance in Rare Earth Metals

Published

on

China's rare earth metals exports

China’s Dominance in Rare Earth Metals

Did you know that a single iPhone contains eight different rare earth metals?

From smartphones and electric vehicles to x-rays and guided-missiles, several modern technologies wouldn’t be what they are without rare earth metals. Also known as rare earth elements or simply “rare earths”, this group of 17 elements is critical to a number of wide-ranging industries.

Although deposits of rare earth metals exist all over the world, the majority of both mining and refining occurs in China. The above graphic from CSIS China Power Project tracks China’s exports of rare earth metals in 2019, providing a glimpse of the country’s dominating presence in the global supply chain.

China’s Top Rare Earth Export Destinations

Around 88% of China’s 2019 rare earth exports went to just five countries, which are among the world’s technological and economic powerhouses.

Export DestinationShare of China's Rare Earth ExportsTop Rare Earth Import (tons)
Japan36.0%Cerium
United States33.4%Lanthanum
Netherlands9.6%Lanthanum
South Korea5.4%Lanthanum
Italy3.5%Cerium
Rest of the World12.1%Cerium

Japan and the U.S. are by far the largest importers, collectively accounting for more than two-thirds of China’s rare earth metals exports.

Lanthanum, found in hybrid vehicles and smartphones, was China’s largest rare earth export by volume, followed by cerium. In dollar terms, terbium was the most expensive—generating $57.9 million from just 115 metric tons of exports.

Why China’s Dominance Matters

As the world transitions to a cleaner future, the demand for rare earth metals is expected to nearly double by 2030, and countries are in need of a reliable supply chain.

China’s virtual monopoly in rare earth metals not only gives it a strategic upper hand over heavily dependent countries like the U.S.—which imports 80% of its rare earths from China—but also makes the supply chain anything but reliable.

“China will not rule out using rare earth exports as leverage to deal with the [Trade War] situation.”

—Gao Fengping et al., 2019, in a report funded by the Chinese government via Horizon Advisory.

A case in point comes from 2010 when China reduced its rare earth export quotas by 37%, which in part resulted in skyrocketing rare earth prices worldwide.

average prices of rare earth imports

The resulting supply chain disruption was significant enough to push the EU, the U.S., and Japan to jointly launch a dispute settlement case through the World Trade Organization, which was ruled against China in 2014.

On the brighter side, the increase in prices led to an influx of capital in the rare earth mining industry, financing more than 200 projects outside China. While this exploration boom was short-lived, it was successful in kick-starting production in other parts of the world.

Breaking China’s Rare Earth Monopoly

China’s dominance in rare earths is the result of years of evolving industrial policies since the 1980s, ranging from tax rebates to export restrictions. In order to reduce dependence on China, the U.S. and Japan have made it a priority to diversify their sources of rare earth metals.

For starters, the U.S. has added rare earth metals to its list of critical minerals, and President Donald Trump recently issued an executive order to encourage local production. On the other side of the world, Japan is making efforts to reduce China’s share of its total rare earth imports to less than 50% by 2025.

Increasing rare earth mining outside of China has reduced China’s global share of mining, down from 97.7% in 2010 to 62.9% in 2019. But mining is merely one piece of the puzzle.

Ultimately, the large majority of rare earth refining, 80%, resides in China. Therefore, even rare earths mined overseas are sent to China for final processing. New North American refining facilities are being set up to tackle this, but the challenge lies in managing the environmental impacts of processing rare earths.

Subscribe to Visual Capitalist
Click for Comments

Energy

The Periodic Table of Endangered Elements

90 different elements form the building blocks for everything on Earth. Some are being used up, and soon could be endangered.

Published

on

The Periodic Table of Endangered Elements

The building blocks for everything on Earth are made from 90 different naturally occurring elements.

This visualization made by the European Chemical Society (EuChemS), shows a periodic table of these 90 different elements, highlighting which ones are in abundance and which ones are in serious threat as of 2021.

On the graphic, the area of each element relates to its number of atoms on a logarithmic scale. The color-coding shows whether there’s enough of each element, or whether the element is becoming scarce, based on current consumption levels.

ElementFull NameStatus
AcActiniumPlentiful supply
AgSilverSerious threat
AIAluminumPlentiful supply
ArArgonPlentiful supply
AsArsenicSerious threat
AtAstatinePlentiful supply
AuGoldLimited availability
BBoronLimited availability
BaBariumPlentiful supply
BeBerylliumPlentiful supply
BiBismuthLimited availability
BrBrominePlentiful supply
CCarbonPlentiful supply / serious threat
CaCalciumPlentiful supply
CdCadmiumRising threat
CeCeriumPlentiful supply
CIChlorinePlentiful supply
CoCobaltRising threat
CrChromiumRising threat
CsCesiumPlentiful supply
CuCopperRising threat
DyDysprosiumRising threat
ErErbiumPlentiful supply
EuEuropiumPlentiful supply
FFlourinePlentiful supply
FeIronPlentiful supply
FrFranciumPlentiful supply
GaGalliumSerious threat
GdGadoliniumPlentiful supply
GeGermaniumSerious threat
HHydrogenPlentiful supply
HeHeliumSerious threat
HfHafniumSerious threat
HgMercuryLimited availability
HoHolmiumPlentiful supply
IIodinePlentiful supply
InIndiumSerious threat
IrIridiumRising threat
KPotassiumPlentiful supply
KrKryptonPlentiful supply
LaLanthanumPlentiful supply
LiLithiumLimited availability
LuLutetiumPlentiful supply
MgMagnesiumLimited availability
MnManganeseLimited availability
MoMolybdenumLimited availability
NNitrogenPlentiful supply
NaSodiumPlentiful supply
NbNiobiumLimited availability
NdNeodymiumLimited availability
NeNeonPlentify supply
NiNickelLimited availability
OOxygenPlentiful supply
OsOsmiumRising threat
PPhosphorusLimited availability
PaProtactiniumPlentiful supply
PbLeadLimited availability
PdPalladiumRising threat
PoPoloniumPlentiful supply
PrPraseodymiumPlentiful supply
PtPlatinumRising threat
RaRadiumPlentiful supply
RbRubidiumPlentiful supply
ReRheniumPlentiful supply
RhRhodiumRising threat
RnRadonPlentify supply
RuRutheniumRising threat
SbAntimonyLimited availability
ScScandiumLimited availability
SeSeleniumLimited availability
SiSiliconPlentiful supply
SSulfurPlentiful supply
SmSamariumPlentiful supply
SnTinLimited availability
SrStrontiumSerious threat
TaTantalumSerious threat
TbTerbiumPlentiful supply
TeTelluriumSerious threat
TiTitaniumPlentiful supply
TIThaliumLimited availability
TmThuliumPlentiful supply
VVanadiumLimited availability
WTungstenLimited availability
XeXenonPlentiful supply
YYttriumSerious threat
YbYtterbiumPlentiful supply
ZnZincSerious threat
ZrZirconiumLimited availability
ThThoriumPlentiful supply
UUraniumRising threat

While these elements don’t technically run out and instead transform (except for helium, which rises and escapes from Earth’s atmosphere), some are being used up exceptionally fast, to the point where they may soon become extremely scarce.

One element worth pointing out on the graphic is carbon, which is three different colors: green, red, and dark gray.

  • Green, because carbon is in abundance (to a fault) in the form of carbon dioxide
  • Red, because it will soon cause a number of cataphoric problems if consumption habits don’t change
  • Gray because carbon-based fuels often come from conflict countries

For more elements-related content, check out our channel dedicated to raw materials and the megatrends that drive them, VC Elements.

Continue Reading

Mining

Mapped: The 10 Largest Gold Mines in the World, by Production

Gold mining companies produced over 3,500 tonnes of gold in 2021. Where in the world are the largest gold mines?

Published

on

The 10 Largest Gold Mines in the World, by Production

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Gold mining is a global business, with hundreds of mining companies digging for the precious metal in dozens of countries.

But where exactly are the largest gold mines in the world?

The above infographic uses data compiled from S&P Global Market Intelligence and company reports to map the top 10 gold-producing mines in 2021.

Editor’s Note: The article uses publicly available global production data from the World Gold Council to calculate the production share of each mine. The percentages slightly differ from those calculated by S&P.

The Top Gold Mines in 2021

The 10 largest gold mines are located across nine different countries in North America, Oceania, Africa, and Asia.

Together, they accounted for around 13 million ounces or 12% of global gold production in 2021.

RankMineLocationProduction (ounces)% of global production
#1Nevada Gold Mines🇺🇸 U.S. 3,311,0002.9%
#2Muruntau🇺🇿 Uzbekistan 2,990,0202.6%
#3Grasberg🇮🇩 Indonesia 1,370,0001.2%
#4Olimpiada🇷🇺 Russia 1,184,0681.0%
#5Pueblo Viejo🇩🇴 Dominican Republic 814,0000.7%
#6Kibali🇨🇩 Democratic Republic of the Congo 812,0000.7%
#7Cadia🇦🇺 Australia 764,8950.7%
#8Lihir🇵🇬 Papua New Guinea 737,0820.6%
#9Canadian Malartic🇨🇦 Canada 714,7840.6%
#10Boddington🇦🇺 Australia 696,0000.6%
N/ATotalN/A13,393,84911.7%

Share of global gold production is based on 3,561 tonnes (114.5 million troy ounces) of 2021 production as per the World Gold Council.

In 2019, the world’s two largest gold miners—Barrick Gold and Newmont Corporation—announced a historic joint venture combining their operations in Nevada. The resulting joint corporation, Nevada Gold Mines, is now the world’s largest gold mining complex with six mines churning out over 3.3 million ounces annually.

Uzbekistan’s state-owned Muruntau mine, one of the world’s deepest open-pit operations, produced just under 3 million ounces, making it the second-largest gold mine. Muruntau represents over 80% of Uzbekistan’s overall gold production.

Only two other mines—Grasberg and Olimpiada—produced more than 1 million ounces of gold in 2021. Grasberg is not only the third-largest gold mine but also one of the largest copper mines in the world. Olimpiada, owned by Russian gold mining giant Polyus, holds around 26 million ounces of gold reserves.

Polyus was also recently crowned the biggest miner in terms of gold reserves globally, holding over 104 million ounces of proven and probable gold between all deposits.

How Profitable is Gold Mining?

The price of gold is up by around 50% since 2016, and it’s hovering near the all-time high of $2,000/oz.

That’s good news for gold miners, who achieved record-high profit margins in 2020. For every ounce of gold produced in 2020, gold miners pocketed $828 on average, significantly higher than the previous high of $666/oz set in 2011.

With inflation rates hitting decade-highs in several countries, gold mining could be a sector to watch, especially given gold’s status as a traditional inflation hedge.

Continue Reading

Subscribe

Popular