Connect with us

Automotive

The World’s Largest Factories

Published

on

The World's Largest Factories

The World’s Largest Factories

Where do our airplanes, vehicles, and spacecraft get built?

Like many other modern goods, they get made in manufacturing plants that are designed to produce at scale.

However, the factories pumping out the world’s cruise ships and electric cars are anything but ordinary. Most of them take up many city blocks, while a few of them have the size, workers, and amenities of an actual city.

From Hyundai’s Ulsan Factory in South Korea to the Boeing Factory near Seattle, today’s infographic and list from Futurism shows the world’s biggest factories. Many of the usual suspects can be found on this list such as Tesla or Airbus, but there is one outlier that may be surprising: one of the world’s largest factories is a 115,000 m² plant that produces lingerie lace in Latvia.

It’s also worth noting that Tesla’s Gigafactory 1 is not included on the list, because it isn’t opening until July 2016. Once completed, it is projected to dwarf many of the factories on this list at the impressive size of 1.3 million m² (13.6 million ft²) based off of the latest estimates:

Tesla Gigfactory 1 size

That’s an expansion of roughly 40% from it’s previous expected size of 929,000 m² (10 million ft²).

Ranking The World’s Largest Factories

10. NASA Vehicle Assembly Building

Located in Florida, this 32,374 m² facility was built by NASA in 1966 for the assembly of the Saturn V rocket. It’s doors are 456 ft tall.

9. Meyer Werft Dockhalle 2

Owned and managed by the Meyer family for six generations, this is the largest shipbuilding hall used to construct cruise ships. It’s located in Papenburg, Germany, and is 63,000 m² in size.

8. Lauma Fabrics

An unexpected entry on this list, this factory produces raw materials and lace for lingerie. It’s about five football fields long, and two wide. Located in Latvia, the facility is 115,645 m² in total area.

7. Jean-Luc Lagardère Plant

It’s no surprise that aircraft assembly plants are among some of the world’s largest factories. This Airbus plant is in France, and is 122,500 m² in size.

6. Mitsubishi Motors North America

For automotive companies, size means economies of scale. This plant was set up in 1981 in Illinois to oversee Mitsubishi’s manufacturing, production, sales, and R&D in North America. This 220,000 m² facility ended production in late 2015 because of the company’s shift to focusing on Asian markets.

5. Belvidere Assembly Plant

Also located in Illinois, this factory is owned by Chrysler. It was constructed in 1965 and takes up a whopping 330,000 m² of space. It’s where the Jeep Compass, Jeep Patriot, and Dodge Dart get assembled.

4. Boeing Factory

Just outside of Seattle is the world’s biggest aircraft assembly operation by size. At 398,000 m², this is where the 747, 767, 777, and 787 Dreamliner get built. It’s also the largest building in the world by volume.

3. Tesla Factory

Not to be confused with the Gigafactory, this is Tesla’s current principal production facility for its cars. It uses 10 of the largest robots in the world, and has a 510,000 m² footprint in Fremont, California.

2. Hyundai Motor Company Ulsan Factory

This is 10x bigger than the Tesla Factory, located in South Korea. It’s over 5 million m² and is Hyundai’s main production facility. Amazingly, it employs 34,000 personnel, while having facilities often reserved for entire cities. The factory has its own hospital, port, and fire station.

1. Volkswagen Wolfsburg Plant

Weighing in at #1 on the “World’s Largest Factories” list is Volkswagen’s plant in Wolfsburg, Germany. It edges out Hyundai’s entry by about 1.5 million m². It’s the biggest car plant in the world and also Volkswagen AG’s headquarters. It’s so big, at 6.5 million m², that floor workers use bicycles to get around.

Continue Reading
Comments

Automotive

Animation: U.S. Electric Vehicle Sales (2010-19)

This stunning animation visualizes the last nine years of U.S. electric vehicle sales. We also look at who will lead the race in the coming years.

Published

on

It’s challenging to get ahead, but it’s even harder to stay ahead.

For companies looking to create a sustainable competitive advantage in a fast-moving, capital intensive, and nascent sector like manufacturing electric vehicles, this is a simple reality that must be accounted for.

Every milestone achieved is met with the onset of new and more sophisticated competitors – and as the industry grows, the stakes grow higher and the market gets further de-risked. Then, the real 800-lb gorillas start to climb their way in, making competition even more fierce.

Visualizing U.S. EV Sales

Today’s animation uses data from InsideEVs to show almost nine years of U.S. sales in the electric vehicle market, sorted by model of car.

It paints a picture of a rapidly evolving market with many new competitors sweeping in to try and claim a stake. You can see the leads of early successes eroded away, the increasing value of scale, and consumer preferences, all rolled into one nifty animation.

The Tesla Roadster starts with a very early lead, but is soon replaced by the Nissan Leaf and Chevrolet Volt, which are the most sold models in the U.S. from 2011-2016.

Closer to the end, the Tesla Model S rises fast to eventually surpass the Leaf by the end of 2017. Finally, the scale of the rollout of the Tesla Model 3 is put into real perspective, as it quickly jumps past all other models in the span of roughly one year.

The Gorilla Search

While Tesla’s rise has been well-documented, it’s also unclear how long the company can maintain an EV leadership position in the North American market.

As carmakers double-down on EVs as their future foundations, many well-capitalized competitors are entering the fray with serious and ambitious plans to make a dent in the market.

In the previous animation, you can already see there are multiple models from BMW, Volkswagen, Honda, Fiat, Ford, Toyota, Nissan, and Chevrolet that have accumulated over 10,000 sales – and as these manufacturers continue to pour capital in the sector, they are likely posturing to try and find how to create the next mass market EV.

Of these, Volkswagen seems to be the most bullish on a global transition to EVs, and the company is expecting to have 50 fully electric models by 2025 while investing $40 billion into new EV technologies (such as batteries) along the way.

The Chinese Bigfoot?

However, the 800-lb gorilla could come from the other side of the Pacific as well.

Global EV Sales

Source: The Driven

Chinese company BYD – which is backed by Warren Buffett – is currently the largest EV manufacturer in the world, selling 250,000 EVs in 2018.

The Chinese carmaker quietly manufacturers buses in the U.S. already, and it has also announced future plans to sell its cars in the U.S. as well.

How will such an animation of cumulative U.S. EV sales look in the future? In such a rapidly evolving space, it seems it could go any which way.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Automotive

How Much Oil is in an Electric Vehicle?

It is counterintuitive, but electric vehicles are not possible without oil – these petrochemicals bring down the weight of cars to make EVs possible.

Published

on

How Much Oil is in an Electric Vehicle?

When most people think about oil and natural gas, the first thing that comes to mind is the gas in the tank of their car. But there is actually much more to oil’s role, than meets the eye…

Oil, along with natural gas, has hundreds of different uses in a modern vehicle through petrochemicals.

Today’s infographic comes to us from American Fuel & Petrochemicals Manufacturers, and covers why oil is a critical material in making the EV revolution possible.

Pliable Properties

It turns out the many everyday materials we rely on from synthetic rubber to plastics to lubricants all come from petrochemicals.

The use of various polymers and plastics has several advantages for manufacturers and consumers:

  1. Lightweight
  2. Inexpensive
  3. Plentiful
  4. Easy to Shape
  5. Durable
  6. Flame Retardant

Today, plastics can make up to 50% of a vehicle’s volume but only 10% of its weight. These plastics can be as strong as steel, but light enough to save on fuel and still maintain structural integrity.

This was not always the case, as oil’s use has evolved and grown over time.

Not Your Granddaddy’s Caddy

Plastics were not always a critical material in auto manufacturing industry, but over time plastics such as polypropylene and polyurethane became indispensable in the production of cars.

Rolls Royce was one of the first car manufacturers to boast about the use of plastics in its car interior. Over time, plastics have evolved into a critical material for reducing the overall weight of vehicles, allowing for more power and conveniences.

Timeline:

  • 1916
    Rolls Royce uses phenol formaldehyde resin in its car interiors
  • 1941
    Henry Ford experiments with an “all-plastic” car
  • 1960
    About 20 lbs. of plastics is used in the average car
  • 1970
    Manufacturers begin using plastic for interior decorations
  • 1980
    Headlights, bumpers, fenders and tailgates become plastic
  • 2000
    Engineered polymers first appear in semi-structural parts of the vehicle
  • Present
    The average car uses over 1000 plastic parts

Electric Dreams: Petrochemicals for EV Innovation

Plastics and other materials made using petrochemicals make vehicles more efficient by reducing a vehicle’s weight, and this comes at a very reasonable cost.

For every 10% in weight reduction, the fuel economy of a car improves roughly 5% to 7%. EV’s need to achieve weight reductions because the battery packs that power them can weigh over 1000 lbs, requiring more power.

Today, plastics and polymers are used for hundreds of individual parts in an electric vehicle.

Oil and the EV Future

Oil is most known as a source of fuel, but petrochemicals also have many other useful physical properties.

In fact, petrochemicals will play a critical role in the mass adoption of electric vehicles by reducing their weight and improving their ranges and efficiency. In According to IHS Chemical, the average car will use 775 lbs of plastic by 2020.

Although it seems counterintuitive, petrochemicals derived from oil and natural gas make the major advancements by today’s EVs possible – and the continued use of petrochemicals will mean that both EVS and traditional vehicles will become even lighter, faster, and more efficient.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Gen III Company Spotlight

Subscribe

Join the 120,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular