Infographic: The Silver Series - The World's Growing Demand For Silver
Connect with us

Mining

The Silver Series: World’s Growing Demand For Silver (Part 3 of 4)

Published

on

Who Controls the World's Silver Supply?

Part 1: The Many Phases of SilverPart 2: Who Controls The World's Silver Supply?Part 3: The World's Growing Demand For SilverPart 4: Making The Case For Silver

Silver Series Part 3: The World’s Growing Demand For Silver

Silver is the most versatile metal in the world. Not only does it have the highest thermal and electrical conductivity of all metals, but it also has many other impressive properties: silver is antibacterial, durable, reflective, and malleable.

With such a multitude of significant material qualities, it is no surprise that now more than half of silver used today is in industrial processes. Last year, it is estimated that 53% of silver was used in industry – an increase from a total of 46% a decade ago.

Industry

Perhaps the most notable industrial sector for silver demand is photovoltaics, where 2.8 million oz of silver is used for every gigawatt of solar energy capacity. The total installed capacity of solar globally is at around 178 GW in 2014, and growth in global installs is also significant, gaining 14% between 2013 and 2014.

The metal’s other main industrial uses include brazing and soldering as well as fabrication. In the former category, using silver for brazing and soldering helps produce leak-tight and corrosion-resistant joints when combining metal parts.

In terms of fabrication, silver-containing vehicles, batteries, and chemical processes are the most important categories for future growth. For use in automotive manufacturing, which has the highest project growth (4.9% CAGR) of categories other than solar, silver is used to coat electrical contacts to ensure the most efficient energy flow. Silver batteries, which have similar energy densities to lithium-ion batteries, are used in military and aerospace applications because they are more reliable and safe. Lastly, silver catalysts are also used to help combine ethylene and oxygen together to create ethylene oxide, which is used in medicine, anti-freeze, and cosmetics.

Investment

While industrial uses are the most prominent for the metal, it is investment that has been the real growth engine for silver demand over the last decade.

In 2014, 20% of all silver is used for investment purposes, compared to only 7% a decade ago. The demand for silver coins and bars has more than quadrupled since the early 2000s, and the coin sales of Canadian Maple Leafs and American Eagles have been soaring for years.

It is also interesting to note, especially at a time of such market vulnerability, that the ratio of silver to gold ounces bought in the market increases. This ratio peaked recently during the Global Financial Crisis in 2008, and in the last 12 months it has jumped up to comparable levels.

Jewelry

Jewelry is also a crucial market for silver, and the category is considered by some to serve as an investment and store of wealth as well. Lower prices for silver in recent years have helped jewelry rebound in Asia and the United States in particular.

Globally, silver jewelry fabrication experienced its second year of consecutive growth, increasing 1.5% to achieve a new record high. This was a reflection chiefly of the strong performance of silver jewelry demand from India, which surged 47% from 2013 levels.

A record of 7,063 tonnes of silver were imported to India in 2014, up 15% from 2013. The country imported more silver in November 2014 than they did in all of 2009. This is partially due to India’s rising population and per capital income, and also due to import restrictions on gold in the world’s second most populous country.

Conclusion

Silver demand is multi-faceted, with just over half of demand coming from industry and the rest split between mainly investment and jewelry demand. We will cover the historical returns of investing in silver in-depth with our final part of the Silver Series in the coming weeks.

Don’t miss out on the last part of the Silver Series by connecting with Visual Capitalist.

Subscribe to Visual Capitalist
Click for Comments

Energy

The Periodic Table of Endangered Elements

90 different elements form the building blocks for everything on Earth. Some are being used up, and soon could be endangered.

Published

on

The Periodic Table of Endangered Elements

The building blocks for everything on Earth are made from 90 different naturally occurring elements.

This visualization made by the European Chemical Society (EuChemS), shows a periodic table of these 90 different elements, highlighting which ones are in abundance and which ones are in serious threat as of 2021.

On the graphic, the area of each element relates to its number of atoms on a logarithmic scale. The color-coding shows whether there’s enough of each element, or whether the element is becoming scarce, based on current consumption levels.

ElementFull NameStatus
AcActiniumPlentiful supply
AgSilverSerious threat
AIAluminumPlentiful supply
ArArgonPlentiful supply
AsArsenicSerious threat
AtAstatinePlentiful supply
AuGoldLimited availability
BBoronLimited availability
BaBariumPlentiful supply
BeBerylliumPlentiful supply
BiBismuthLimited availability
BrBrominePlentiful supply
CCarbonPlentiful supply / serious threat
CaCalciumPlentiful supply
CdCadmiumRising threat
CeCeriumPlentiful supply
CIChlorinePlentiful supply
CoCobaltRising threat
CrChromiumRising threat
CsCesiumPlentiful supply
CuCopperRising threat
DyDysprosiumRising threat
ErErbiumPlentiful supply
EuEuropiumPlentiful supply
FFlourinePlentiful supply
FeIronPlentiful supply
FrFranciumPlentiful supply
GaGalliumSerious threat
GdGadoliniumPlentiful supply
GeGermaniumSerious threat
HHydrogenPlentiful supply
HeHeliumSerious threat
HfHafniumSerious threat
HgMercuryLimited availability
HoHolmiumPlentiful supply
IIodinePlentiful supply
InIndiumSerious threat
IrIridiumRising threat
KPotassiumPlentiful supply
KrKryptonPlentiful supply
LaLanthanumPlentiful supply
LiLithiumLimited availability
LuLutetiumPlentiful supply
MgMagnesiumLimited availability
MnManganeseLimited availability
MoMolybdenumLimited availability
NNitrogenPlentiful supply
NaSodiumPlentiful supply
NbNiobiumLimited availability
NdNeodymiumLimited availability
NeNeonPlentify supply
NiNickelLimited availability
OOxygenPlentiful supply
OsOsmiumRising threat
PPhosphorusLimited availability
PaProtactiniumPlentiful supply
PbLeadLimited availability
PdPalladiumRising threat
PoPoloniumPlentiful supply
PrPraseodymiumPlentiful supply
PtPlatinumRising threat
RaRadiumPlentiful supply
RbRubidiumPlentiful supply
ReRheniumPlentiful supply
RhRhodiumRising threat
RnRadonPlentify supply
RuRutheniumRising threat
SbAntimonyLimited availability
ScScandiumLimited availability
SeSeleniumLimited availability
SiSiliconPlentiful supply
SSulfurPlentiful supply
SmSamariumPlentiful supply
SnTinLimited availability
SrStrontiumSerious threat
TaTantalumSerious threat
TbTerbiumPlentiful supply
TeTelluriumSerious threat
TiTitaniumPlentiful supply
TIThaliumLimited availability
TmThuliumPlentiful supply
VVanadiumLimited availability
WTungstenLimited availability
XeXenonPlentiful supply
YYttriumSerious threat
YbYtterbiumPlentiful supply
ZnZincSerious threat
ZrZirconiumLimited availability
ThThoriumPlentiful supply
UUraniumRising threat

While these elements don’t technically run out and instead transform (except for helium, which rises and escapes from Earth’s atmosphere), some are being used up exceptionally fast, to the point where they may soon become extremely scarce.

One element worth pointing out on the graphic is carbon, which is three different colors: green, red, and dark gray.

  • Green, because carbon is in abundance (to a fault) in the form of carbon dioxide
  • Red, because it will soon cause a number of cataphoric problems if consumption habits don’t change
  • Gray because carbon-based fuels often come from conflict countries

For more elements-related content, check out our channel dedicated to raw materials and the megatrends that drive them, VC Elements.

Continue Reading

Mining

Mapped: The 10 Largest Gold Mines in the World, by Production

Gold mining companies produced over 3,500 tonnes of gold in 2021. Where in the world are the largest gold mines?

Published

on

The 10 Largest Gold Mines in the World, by Production

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Gold mining is a global business, with hundreds of mining companies digging for the precious metal in dozens of countries.

But where exactly are the largest gold mines in the world?

The above infographic uses data compiled from S&P Global Market Intelligence and company reports to map the top 10 gold-producing mines in 2021.

Editor’s Note: The article uses publicly available global production data from the World Gold Council to calculate the production share of each mine. The percentages slightly differ from those calculated by S&P.

The Top Gold Mines in 2021

The 10 largest gold mines are located across nine different countries in North America, Oceania, Africa, and Asia.

Together, they accounted for around 13 million ounces or 12% of global gold production in 2021.

RankMineLocationProduction (ounces)% of global production
#1Nevada Gold Mines🇺🇸 U.S. 3,311,0002.9%
#2Muruntau🇺🇿 Uzbekistan 2,990,0202.6%
#3Grasberg🇮🇩 Indonesia 1,370,0001.2%
#4Olimpiada🇷🇺 Russia 1,184,0681.0%
#5Pueblo Viejo🇩🇴 Dominican Republic 814,0000.7%
#6Kibali🇨🇩 Democratic Republic of the Congo 812,0000.7%
#7Cadia🇦🇺 Australia 764,8950.7%
#8Lihir🇵🇬 Papua New Guinea 737,0820.6%
#9Canadian Malartic🇨🇦 Canada 714,7840.6%
#10Boddington🇦🇺 Australia 696,0000.6%
N/ATotalN/A13,393,84911.7%

Share of global gold production is based on 3,561 tonnes (114.5 million troy ounces) of 2021 production as per the World Gold Council.

In 2019, the world’s two largest gold miners—Barrick Gold and Newmont Corporation—announced a historic joint venture combining their operations in Nevada. The resulting joint corporation, Nevada Gold Mines, is now the world’s largest gold mining complex with six mines churning out over 3.3 million ounces annually.

Uzbekistan’s state-owned Muruntau mine, one of the world’s deepest open-pit operations, produced just under 3 million ounces, making it the second-largest gold mine. Muruntau represents over 80% of Uzbekistan’s overall gold production.

Only two other mines—Grasberg and Olimpiada—produced more than 1 million ounces of gold in 2021. Grasberg is not only the third-largest gold mine but also one of the largest copper mines in the world. Olimpiada, owned by Russian gold mining giant Polyus, holds around 26 million ounces of gold reserves.

Polyus was also recently crowned the biggest miner in terms of gold reserves globally, holding over 104 million ounces of proven and probable gold between all deposits.

How Profitable is Gold Mining?

The price of gold is up by around 50% since 2016, and it’s hovering near the all-time high of $2,000/oz.

That’s good news for gold miners, who achieved record-high profit margins in 2020. For every ounce of gold produced in 2020, gold miners pocketed $828 on average, significantly higher than the previous high of $666/oz set in 2011.

With inflation rates hitting decade-highs in several countries, gold mining could be a sector to watch, especially given gold’s status as a traditional inflation hedge.

Continue Reading

Subscribe

Popular