Connect with us


Ranked: Nuclear Power Production, by Country



Subscribe to the Elements free mailing list for more like this

nuclear power

Nuclear Power Production by Country

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Nearly 450 reactors around the world supply various nations with nuclear power, combining for about 10% of the world’s electricity, or about 4% of the global energy mix.

But while some countries are turning to nuclear as a clean energy source, nuclear energy generation overall has seen a slowdown since its peak in the 1990s.

The above infographic breaks down nuclear electricity generation by country in 2020 using data from the Power Reactor Information System (PRIS).

Ranked: The Top 15 Countries for Nuclear Power

Just 15 countries account for more than 91% of global nuclear power production. Here’s how much energy these countries produced in 2020:

RankCountryNumber of Operating ReactorsNuclear Electricity Supplied
% share
#1U.S. 🇺🇸96789,91930.9%
#2China 🇨🇳50344,74813.5%
#3France 🇫🇷58338,67113.3%
#4Russia 🇷🇺39201,8217.9%
#5South Korea 🇰🇷24152,5836.0%
#6Canada 🇨🇦1992,1663.6%
#7Ukraine 🇺🇦1571,5502.8%
#8Germany 🇩🇪660,9182.4%
#9Spain 🇪🇸755,8252.2%
#10Sweden 🇸🇪747,3621.9%
#11U.K. 🇬🇧1545,6681.8%
#12Japan 🇯🇵3343,0991.7%
#13India 🇮🇳2240,3741.6%
#14Belgium 🇧🇪732,7931.3%
#15Czechia 🇨🇿628,3721.1%
Rest of the World 🌎44207,3408.1%

In the U.S., nuclear power produces over 50% of the country’s clean electricity. Additionally, 88 of the country’s 96 operating reactors in 2020 received approvals for a 20-year life extension.

China, the world’s second-largest nuclear power producer, is investing further in nuclear energy in a bid to achieve its climate goals. The plan, which includes building 150 new reactors by 2035, could cost as much as $440 billion.

On the other hand, European opinions on nuclear energy are mixed. Germany is the eighth-largest on the list but plans to shutter its last operating reactor in 2022 as part of its nuclear phase-out. France, meanwhile, plans to expand its nuclear capacity.

Which Countries Rely Most on Nuclear Energy?

Although total electricity generation is useful for a high-level global comparison, it’s important to remember that there are some smaller countries not featured above where nuclear is still an important part of the electricity mix.

Here’s a breakdown based on the share of nuclear energy in a country’s electricity mix:

RankCountryNuclear Share of Electricity Mix
#1France 🇫🇷70.6%
#2Slovakia 🇸🇰53.1%
#3Ukraine 🇺🇦51.2%
#4Hungary 🇭🇺48.0%
#5Bulgaria 🇧🇬40.8%
#6Belgium 🇧🇪39.1%
#7Slovenia 🇸🇮37.8%
#8Czechia 🇨🇿37.3%
#9Armenia 🇦🇲34.5%
#10Finland 🇫🇮33.9%
#11Switzerland 🇨🇭32.9%
#12Sweden 🇸🇪29.8%
#13South Korea 🇰🇷29.6%
#14Spain 🇪🇸22.2%
#15Russia 🇷🇺20.6%
#16Romania 🇷🇴19.9%
#17United States 🇺🇸19.7%
#18Canada 🇨🇦14.6%
#19United Kingdom 🇬🇧14.5%
#20Germany 🇩🇪11.3%

European countries dominate the leaderboard with 14 of the top 15 spots, including France, where nuclear power is the country’s largest source of electricity.

It’s interesting to note that only a few of these countries are top producers of nuclear in absolute terms. For example, in Slovakia, nuclear makes up 53.6% of the electricity mix—however, the country’s four reactors make up less than 1% of total global operating capacity.

On the flipside, the U.S. ranks 17th by share of nuclear power in its mix, despite producing 31% of global nuclear electricity in 2020. This discrepancy is largely due to size and population. European countries are much smaller and produce less electricity overall than larger countries like the U.S. and China.

The Future of Nuclear Power

The nuclear power landscape is constantly changing.

There were over 50 additional nuclear reactors under construction in 2020, and hundreds more are planned primarily in Asia.

As countries turn away from fossil fuels and embrace carbon-free energy sources, nuclear energy might see a resurgence in the global energy mix despite the phase-outs planned in several countries around the globe.

Subscribe to Visual Capitalist
Click for Comments


Fertilizer: Why it’s More Important than You Think

Fertilizer usage dates back to as early as 6,000 to 2,400 BC and remains just as crucial for crop production today.



The following content is sponsored by Brazil Potash

Fertilizer: Why It’s More Important Than You think

The global population is expected to reach nearly 10 billion people by 2050. So, in order to feed our growing world sustainably, increased crop production is essential.

Over recent decades, farmers have been able to more than double their production of crops thanks to fertilizers and the vital nutrients they contain. 

When crops are harvested, the essential nutrients are taken away with them to the dining table, resulting in the depletion of these nutrients in the soil. To replenish these nutrients, fertilizers are needed, and the cycle continues.

The above infographic by Brazil Potash shows the role that each macronutrient plays in growing healthy, high-yielding crops.

Food for Growth

Nitrogen, phosphorus, and potassium (NPK) are three primary macronutrients that are the building blocks of the global fertilizer industry. Each plays a key role in plant nutrition and promoting crop growth with higher yields. 

Let’s take a look at how each macronutrient affects plant growth.

NutrientWhy it’s needed?What does it do?What happens without it?
Nitrogen (N)Needed for the
formation of all plant
and animal proteins.
Nitrogen ensures that
energy is available
when and where it is
needed to maximize
yield and regulate
water and nutrient uptake.
Nitrogen deficiency in
crops causes stunted
and spindly plants, low
protein content in seed
and vegetative parts,
and fewer leaves.
Phosphorus (P)Vital for plant
Phosphorus allows
plants to convert the
sun’s energy into food,
fiber, and oil. It
improves how
efficiently the plant
absorbs water and
macronutrients such as nitrogen.
Phosphorus deficiency
causes stunted growth,
reduced crop yields,
low quality harvests,
and moisture stress.
Potassium (K)Essential for robust
high quality crops.
Potassium helps
regulate water pressure
in plant cells and
maximizes crop yields
by strengthening plant
stems to make them
more resilient to
drought, flooding, and
temperature swings.
Potassium deficiency
causes a slower growth
rate of plants, delayed
pollination and maturity,
underdeveloped leaves,
reduced crop yields,
weakened stalks, and moisture stress.

If crops lack NPK macronutrients, they become vulnerable to various stresses caused by weather conditions, pests, and diseases. Therefore, it is crucial to maintain a balance of all three macronutrients for the production of healthy, high-yielding crops.

The Importance of Fertilizers

Humans identified the importance of using fertilizers, such as manure, to nourish crops dating back to nearly 6,000 to 2,400 BC.

As agriculture became more intensive and large-scale, farmers began to experiment with different types of fertilizers. Today advanced chemical fertilizers are used across the globe to enhance global crop production. 

There are a myriad of factors that affect soil type, and so the farmable land must have a healthy balance of all three macronutrients to support high-yielding, healthy crops. Consequently, arable land around the world varies in the amount and type of fertilizer it needs. 

Fertilizers play an integral role in strengthening food security, and a supply of locally available fertilizer is needed in supporting global food systems in an ever-growing world.

Brazil is one of the largest exporters of agricultural goods in the world. However, the country is vulnerable as it relies on importing more than 95% of its potash to support crop growth.

Brazil Potash is developing a new potash project in Brazil to ensure a stable domestic source of this nutrient-rich fertilizer critical for global food security.

Click here to learn more about fertilizer and food production in Brazil.

Subscribe to Visual Capitalist
Click for Comments

You may also like


Continue Reading