Connect with us

Energy

Progress on 2030 Renewable Energy Targets by Country

Published

on

Subscribe to the Decarbonization Channel’s free mailing list for more like this

Progress on 2030 Renewable Energy Targets by Country

Progress on 2030 Renewable Energy Targets

This was originally posted on the Decarbonization Channel. Subscribe to the free mailing list to be the first to see graphics related to decarbonization with a focus on the U.S. energy sector.

The International Energy Agency states that the global installed capacity of renewable energy must triple by 2030 to limit global warming to 1.5°C above pre-industrial levels.

This makes the next six years critical in the climate fight, with the upcoming United Nations COP28 event in Dubai representing a great time to assess the progress of countries toward achieving their 2030 targets.

Checking in on Progress

As set out by their Nationally Determined Contributions in the Paris Agreement, many countries, including major electricity consumers such as the U.S., European Union, China, India, and the UK, have set ambitious targets for increasing their solar and wind power generation capacities by the year 2030.

The data, however, suggests that many are struggling to keep pace with the required annual capacity additions that will allow them to hit these targets.

Currently, China stands out as the only nation on track to meet its 2030 target. In 2022, it not only met but significantly exceeded its required capacity additions to remain on track, adding 168% of the required 101 GW.

Let’s now take a closer look at how each of these countries are faring, comparing how much wind and solar capacity they needed to add with how much they actually did in 2022.

Country / Region2030 TargetAnnual Average Wind and Solar Capacity Additions
Needed to Hit 2030 Target
Actual Capacity Additions in 2022
WindSolarTotalWindSolarTotal
India40% zero-carbon generation by 2030 (includes nuclear)16 GW19 GW35 GW2 GW18 GW20 GW
China28% renewables by 203057 GW44 GW101 GW55 GW115 GW170 GW
United States739 GW of wind and solar by 2030 to reach zero-carbon electricity by 203534 GW35 GW69 GW11 GW21 GW32 GW
United Kingdom60% renewables by 20304 GW3 GW7 GW4 GW1 GW5 GW
European UnionREPowerEU: 42.5% renewables by 203038 GW48 GW86 GW16 GW38 GW54 GW

Overall, the U.S. and India were the furthest off from their targets in 2022, adding only 46% and 57% of what was needed, respectively. European countries, on the other hand, made progress but still need substantial annual additions to meet their targets by 2030.

Playing Catch-Up: The Path to 2030

Collectively, the U.S., European Union, China, India, and the UK account for more than 60% of global electricity consumption, underscoring their profound responsibility in decarbonizing their electricity sectors.

Investments in research and development, policy support, and infrastructure development are all crucial pieces of the puzzle when it comes to achieving 2030 targets.

In the coming years, these nations have an opportunity to transform the global energy landscape and move the needle toward achieving net-zero on a global scale.

Click for Comments

Energy

Charted: Global Uranium Reserves, by Country

We visualize the distribution of the world’s uranium reserves by country, with 3 countries accounting for more than half of total reserves.

Published

on

A cropped chart visualizing the distribution of the global uranium reserves, by country.

Charted: Global Uranium Reserves, by Country

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

There can be a tendency to believe that uranium deposits are scarce from the critical role it plays in generating nuclear energy, along with all the costs and consequences related to the field.

But uranium is actually fairly plentiful: it’s more abundant than gold and silver, for example, and about as present as tin in the Earth’s crust.

We visualize the distribution of the world’s uranium resources by country, as of 2021. Figures come from the World Nuclear Association, last updated on August 2023.

Ranked: Uranium Reserves By Country (2021)

Australia, Kazakhstan, and Canada have the largest shares of available uranium resources—accounting for more than 50% of total global reserves.

But within these three, Australia is the clear standout, with more than 1.7 million tonnes of uranium discovered (28% of the world’s reserves) currently. Its Olympic Dam mine, located about 600 kilometers north of Adelaide, is the the largest single deposit of uranium in the world—and also, interestingly, the fourth largest copper deposit.

Despite this, Australia is only the fourth biggest uranium producer currently, and ranks fifth for all-time uranium production.

CountryShare of Global
Reserves
Uranium Reserves (Tonnes)
🇦🇺 Australia28%1.7M
🇰🇿 Kazakhstan13%815K
🇨🇦 Canada10%589K
🇷🇺 Russia8%481K
🇳🇦 Namibia8%470K
🇿🇦 South Africa5%321K
🇧🇷 Brazil5%311K
🇳🇪 Niger5%277K
🇨🇳 China4%224K
🇲🇳 Mongolia2%145K
🇺🇿 Uzbekistan2%131K
🇺🇦 Ukraine2%107K
🌍 Rest of World9%524K
Total100%6M

Figures are rounded.

Outside the top three, Russia and Namibia both have roughly the same amount of uranium reserves: about 8% each, which works out to roughly 470,000 tonnes.

South Africa, Brazil, and Niger all have 5% each of the world’s total deposits as well.

China completes the top 10, with a 3% share of uranium reserves, or about 224,000 tonnes.

A caveat to this is that current data is based on known uranium reserves that are capable of being mined economically. The total amount of the world’s uranium is not known exactly—and new deposits can be found all the time. In fact the world’s known uranium reserves increased by about 25% in the last decade alone, thanks to better technology that improves exploration efforts.

Meanwhile, not all uranium deposits are equal. For example, in the aforementioned Olympic Dam, uranium is recovered as a byproduct of copper mining occurring at the same site. In South Africa, it emerges as a byproduct during treatment of ores in the gold mining process. Orebodies with high concentrations of two substances can increase margins, as costs can be shared for two different products.

Continue Reading

Subscribe

Popular