Connect with us

Mining

The Extraordinary Raw Materials in an iPhone 6s

Published

on

The Extraordinary Raw Materials in an iPhone 6s

The Extraordinary Raw Materials in an iPhone 6s

Presented by: Red Cloud Klondike Strike (Equity crowdfunding in mining)

Apple launched the first iPhone in 2007, and since then the iconic smartphone has sold over 700 million units around the world.

This best-selling handset sets the standard for smartphone performance and features. However, the iPhone would not be possible without the extraordinary raw materials that line the insides of the case.

Here’s what’s in an Apple iPhone 6s:

Screen

The iPhone’s screen is much more complex than it may seem. The aluminosilicate glass is bombarded with ions of potassium for strength. Meanwhile, a layer of indium tin oxide makes it touchscreen capable, and small amounts of rare earths enables certain colors on the display.

Battery:

The iPhone uses lithium cobalt oxide (LiCoO2) chemistry in its cathode, with 60% of it being made from cobalt. It also uses a graphite anode and aluminum casing.

Electronics:

Processor Chip: The phone’s processor is mainly made from silicon, but it is bombarded by various elements such as phosphorus, antimony, arsenic, boron, indium, and gallium to give it superior electrical properties.

Micro-Electrical: Copper, gold, silver, and tungsten are used for electrical connections within the phone. Which metal is chosen depends on the need. For example, while silver is the most conductive metal, gold never tarnishes.

Micro-capacitors: regulate electricity flow Apple managed to guarantee it only used conflict-free tantalum in February 2014.

Soldering: Tin, copper, and silver.

Sound and Vibration

Speakers and Headphones: To get lots of sound from a small place, high-powered neodymium magnets are used. They are made from neodymium, iron, and boron, and sometimes also containing smaller amounts of other rare earths.

The same magnets also power the phone’s vibration function.

Case:

Aluminum: The iPhone’s case uses aerospace-grade aluminum with an anodized outside layer for extra protection. This layer is just five micrometers thick, thinner than paint.

Camera:

Sapphire glass: This synthetic material covering the lens rates a 9 on Moh’s hardness scale, making it nearly as hard as a diamond.

Material Substitution?

Of the 83 stable and non-radioactive elements in the periodic table, a total of 62 different types of metals go into the average mobile handset.

In 2013, academics at Yale University looked at these metals and metalloids inside smartphones, and rated their possible replacements. They concluded that 12 of these materials effectively had no replacements at all.

Continue Reading
Comments

Automotive

Palladium: The Secret Weapon in Fighting Pollution

The world is in critical need of palladium. It’s a crucial metal in reducing emissions from gas-powered vehicles, and our secret weapon for cleaner air.

Published

on

Despite the growing hype around electric vehicles, conventional gas-powered vehicles are expected to be on the road well into the future.

As a result, exhaust systems will continue to be a critical tool in reducing harmful air pollution.

The Power of Palladium

Today’s infographic comes to us from North American Palladium, and it demonstrates the unique properties of the precious metal, and how it’s used in catalytic converters around the world.

In fact, palladium enables car manufacturers to meet stricter emission standards, making it a secret weapon for fighting pollution going forward.

Palladium: The Secret Weapon in Fighting Pollution

The world is in critical need of palladium today.

It’s the crucial metal in reducing harmful emissions from gas powered vehicles—as environmental standards tighten, cars are using more and more palladium, straining global supplies.

What is Palladium?

Palladium is one of six platinum group metals which share similar chemical, physical, and structural features. Palladium has many uses, but the majority of global consumption comes from the autocatalyst industry.

In 2018, total gross demand for the metal was 10,121 million ounces (Moz), of which 8,655 Moz went to autocatalysts. These were the leading regions by demand:

  • North America: 2,041 Moz
  • Europe: 1,883 Moz
  • China: 2,117 Moz
  • Japan: 859 Moz
  • Rest of the World: 1,755 Moz

Catalytic Converters: Palladium vs. Platinum

The combustion of gasoline creates three primary pollutants: hydrocarbons, nitrogen oxides, and carbon monoxide. Catalytic converters work to alter these poisonous and often dangerous chemicals into safer compounds.

In order to control emissions, countries around the world have come up with strict emissions standards that auto manufacturers must meet, but these are far from the reality of how much pollutants are emitted by drivers every day.

Since no one drives in a straight line or in perfect conditions, stricter emissions testing is coming into effect. Known as Real Driving Emissions (RDE), these tests reveal that palladium performs much better than platinum in a typical driving situation.

In addition, the revelation of the Volkswagen emission scandal (known as Dieselgate) further undermines platinum use in vehicles. As a result, diesel engines are being phased out in favor of gas-powered vehicles that use palladium.

Where does Palladium Come From?

If the world is using all this palladium, where is it coming from?

Approximately, 90% of the world’s palladium production comes as a byproduct of mining other metals, with the remaining 10% coming from primary production.

In 2018, there was a total of 6.88 million ounces of mine supply primarily coming from Russia and South Africa. Conflicts in these jurisdictions present significant risks to the global supply chain. There are few North American jurisdictions, such as Ontario and Montana, which present an opportunity for more stable primary production of palladium.

Long Road to Extinction

The current price of palladium is driven by fundamental supply and demand issues, not investor speculation. Between 2012 and 2018, an accumulated deficit of five million ounces has placed pressures on readily available supplies of above-ground palladium.

Vehicles with internal combustion engines (ICE) will continue to dominate the roads well into the future. According to Bloomberg New Energy Finance, it will not be until 2040 that ICE vehicles will dip below 50% of new car sales market, in favor of plug-in and hybrid vehicles. Stricter emissions standards will further bolster palladium demand.

The world needs stable and steady supplies of palladium today, and well into the future.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Economy

What is a Commodity Super Cycle?

The prices of energy, agriculture, livestock and metals tell the story of human development. Learn about the commodity super cycle in this infographic.

Published

on

Visualizing the Commodity Super Cycle

Since the beginning of the Industrial Revolution, the world has seen its population and the need for natural resources boom.

As more people and wealth translate into the demand for global goods, the prices of commodities—such as energy, agriculture, livestock, and metals—have often followed in sync.

This cycle, which tends to coincide with extended periods of industrialization and modernization, helps in telling a story of human development.

Why are Commodity Prices Cyclical?

Commodity prices go through extended periods during which prices are well above or below their long-term price trend. There are two types of swings in commodity prices: upswings and downswings.

Many economists believe that the upswing phase in super cycles results from a lag between unexpected, persistent, and positive trends to support commodity demand with slow-moving supply, such as the building of a new mine or planting a new crop. Eventually, as adequate supply becomes available and demand growth slows, the cycle enters a downswing phase.

While individual commodity groups have their own price patterns, when charted together they form extended periods of price trends known as “Commodity Super Cycles” where there is a recognizable pattern across major commodity groups.

How can a Commodity Super Cycle be Identified?

Commodity super cycles are different from immediate supply disruptions; high or low prices persist over time.

In our above chart, we used data from the Bank of Canada, who leveraged a statistical technique called an asymmetric band pass filter. This is a calculation that can identify the patterns or frequencies of events in sets of data.

Economists at the Bank of Canada employed this technique using their Commodity Price Index (BCPI) to search for evidence of super cycles. This is an index of the spot or transaction prices in U.S. dollars of 26 commodities produced in Canada and sold to world markets.

  • Energy: Coal, Oil, Natural Gas
  • Metals and Minerals: Gold, Silver, Nickel, Copper, Aluminum, Zinc, Potash, Lead, Iron
  • Forestry: Pulp, Lumber, Newsprint
  • Agriculture: Potatoes, Cattle, Hogs, Wheat, Barley, Canola, Corn
  • Fisheries: Finfish, Shellfish

Using the band pass filter and the BCPI data, the chart indicates that there are four distinct commodity price super cycles since 1899.

  • 1899-1932:
    The first cycle coincides with the industrialization of the United States in the late 19th century.
  • 1933-1961:
    The second began with the onset of global rearmament before the Second World War in the 1930s.
  • 1962-1995:
    The third began with the reindustrialization of Europe and Japan in the late 1950s and early 1960s.
  • 1996 – Present:
    The fourth began in the mid to late 1990s with the rapid industrialization of China

What Causes Commodity Cycles?

The rapid industrialization and growth of a nation or region are the main drivers of these commodity super cycles.

From the rapid industrialization of America emerging as a world power at the beginning of the 20th century, to the ascent of China at the beginning of the 21st century, these historical periods of growth and industrialization drive new demand for commodities.

Because there is often a lag in supply coming online, prices have nowhere to go but above long-term trend lines. Then, prices cannot subside until supply is overshot, or growth slows down.

Is This the Beginning of a New Super Cycle?

The evidence suggests that human industrialization drives commodity prices into cycles. However, past growth was asymmetric around the world with different countries taking the lion’s share of commodities at different times.

With more and more parts of the world experiencing growth simultaneously, demand for commodities is not isolated to a few nations.

Confined to Earth, we could possibly be entering an era where commodities could perpetually be scarce and valuable, breaking the cycles and giving power to nations with the greatest access to resources.

Each commodity has its own story, but together, they show the arc of human development.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Pasha Brands Company Spotlight

Subscribe

Join the 120,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular