Mining
How AI and Big Data Will Unlock the Next Wave of Mineral Discoveries
How AI and Big Data Will Unlock the Next Mineral Discovery
Emerging technologies such as artificial intelligence (AI) and machine learning are rapidly proving their value across many industries.
Today’s infographic comes from GoldSpot Discoveries, and it shows that when this tech is applied to massive geological data sets, that there is growing potential to unlock the next wave of mineral discoveries.
Mineral Exploration: Fortunes Go to the Few
Discovering new sources of minerals, such as copper, gold, or even cobalt, can be notoriously difficult but also very rewarding. According to Goldspot, the chance of finding a new deposit is around 0.5%, with odds improving to 5% if exploration takes place near a known resource.
On the whole, mineral exploration has not been a winning prospect if you compare the total dollar spend and the actual value of the resulting discoveries.
Measuring Discovery Performance by Region (2005 to 2014)
Region | Exploration Spend | Estimated Value of Discoveries | Value/Spend ratio |
---|---|---|---|
Australia | $13 billion | $13 billion | 0.97 |
Canada | $25 billion | $19 billion | 0.77 |
USA | $10 billion | $5 billion | 0.48 |
Latin America | $33 billion | $19 billion | 0.57 |
Pacific/SE Asia | $8 billion | $4 billion | 0.49 |
Africa | $20 billion | $23 billion | 1.19 |
Western Europe | $4 billion | $2 billion | 0.42 |
Rest of World | $27 billion | $8 billion | 0.32 |
Total | $140 billion | $93 billion | 0.57 |
Figures in 2014 dollars. (Source: MinEx Consulting, March 2015)
Aside from the geographic insights, on the surface this data reveals that mineral exploration does not pay for itself. That said, there are still significant discoveries worth billions of dollars – it’s just the returns go inordinately to a few small players that make big finds.
Much of the money spent on exploration may not have produced the next great discovery, but you can be sure it created massive volumes of data that could be used for further refining of exploration models.
So, What is the Problem?
Every exploration failure or success produces geological insights. The mineral exploration process is the source of massive amounts of data in the form of soil samples, chip samples, geochemistry, drill results, and assay results. Each drill hole is a tiny snapshot into the processes that form the earth.
A single drill hole can create 200 megabytes of data and when there are many drill holes coupled with other types of information, an exploration project can produce terabytes of data. If you wanted to compare your one project to hundreds of others to find the best insights, the amount of data becomes dizzying.
All these data points are clues that can be used to find new mineral deposits, but to sort through them is too much for even an entire team of capable geologists.
Luckily, using today’s technology, this data can now be used to train computers to spot the areas showing similar patterns to past discoveries.
AI-Assistance
The true power of AI will be in its ability to empower technically trained professionals to make decisions in an increasingly complex and data-driven world.
Professor Ajay Agrawal, a noted academic in AI and founder of the University of Toronto’s Creative Destruction Lab, categorizes human activities into five categories:
- Data collection
- Information retrieval
- Prediction
- Judgment
- Action
He concludes that machines should do the first three and that humans – such as geologists, doctors, lawyers, investment bankers and others – should make the judgment calls and take the actions based on predictive capabilities of AI.
The mineral exploration industry presents a good example of how AI and big data can help technical professionals make discoveries faster, with less money, using a wide variety of data inputs created.
Opportunity Generator and the AI-friendly Future
AI can take the large amounts of data from many different projects in order to spot the right opportunities to further explore, building on decades of geological data from projects around the world.
The right technology can help reduce the risk inherent in exploration and lead to more mineral discoveries on budget, rewarding those that deployed their data most effectively. Companies that are able to harness this power will tip the scales in their favor.
As a result, mineral exploration is no longer so much an art of interpretation – but instead, it becomes closer to a pure science, giving geologists a whole-field perspective of all the data.
Mining
The 50 Minerals Critical to U.S. Security
This graphic lists all minerals that are deemed critical to both the economic and national security of the United States.

The 50 Minerals Critical to U.S. Security
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
The U.S. aims to cut its greenhouse gas emissions in half by 2030 as part of its commitment to tackling climate change, but might be lacking the critical minerals needed to achieve its goals.
The American green economy will rely on renewable sources of energy like wind and solar, along with the electrification of transportation. However, local production of the raw materials necessary to produce these technologies, including solar panels, wind turbines, and electric vehicles, is lacking. Understandably, this has raised concerns in Washington.
In this graphic, based on data from the U.S. Geological Survey, we list all of the minerals that the government has deemed critical to both the economic and national security of the United States.
What are Critical Minerals?
A critical mineral is defined as a non-fuel material considered vital for the economic well-being of the world’s major and emerging economies, whose supply may be at risk. This can be due to geological scarcity, geopolitical issues, trade policy, or other factors.
In 2018, the U.S. Department of the Interior released a list of 35 critical minerals. The new list, released in February 2022, contains 15 more commodities.
Much of the increase in the new list is the result of splitting the rare earth elements and platinum group elements into individual entries rather than including them as “mineral groups.” In addition, the 2022 list of critical minerals adds nickel and zinc to the list while removing helium, potash, rhenium, and strontium.
Mineral | Example Uses | Net Import Reliance |
---|---|---|
Beryllium | Alloying agent in aerospace, defense industries | 11% |
Aluminum | Power lines, construction, electronics | 13% |
Zirconium | High-temparature ceramics production | 25% |
Palladium | Catalytic converters | 40% |
Germanium | Fiber optics, night vision applications | 50% |
Lithium | Rechargeable batteries | 50% |
Magnesium | Alloys, electronics | 50% |
Nickel | Stainless steel, rechargeable batteries | 50% |
Tungsten | Wear-resistant metals | 50% |
Barite | Hydrocarbon production | 75% |
Chromium | Stainless steel | 75% |
Tin | Coatings, alloys for steel | 75% |
Cobalt | Rechargeable batteries, superalloys | 76% |
Platinum | Catalytic converters | 79% |
Antimony | Lead-acid batteries, flame retardants | 81% |
Zinc | Metallurgy to produce galvanized steel | 83% |
Titanium | White pigment, metal alloys | 88% |
Bismuth | Medical, atomic research | 94% |
Tellurium | Solar cells, thermoelectric devices | 95% |
Vanadium | Alloying agent for iron and steel | 96% |
Arsenic | Semi-conductors, lumber preservatives, pesticides | 100% |
Cerium | Catalytic converters, ceramics, glass, metallurgy | 100% |
Cesium | Research, development | 100% |
Dysprosium | Data storage devices, lasers | 100% |
Erbium | Fiber optics, optical amplifiers, lasers | 100% |
Europium | Phosphors, nuclear control rods | 100% |
Fluorspar | Manufacture of aluminum, cement, steel, gasoline | 100% |
Gadolinium | Medical imaging, steelmaking | 100% |
Gallium | Integrated circuits, LEDs | 100% |
Graphite | Lubricants, batteries | 100% |
Holmium | Permanent magnets, nuclear control rods | 100% |
Indium | Liquid crystal display screens | 100% |
Lanthanum | Catalysts, ceramics, glass, polishing compounds | 100% |
Lutetium | Scintillators for medical imaging, cancer therapies | 100% |
Manganese | Steelmaking, batteries | 100% |
Neodymium | Rubber catalysts, medical, industrial lasers | 100% |
Niobium | Steel, superalloys | 100% |
Praseodymium | Permanent magnets, batteries, aerospace alloys | 100% |
Rubidium | Research, development in electronics | 100% |
Samarium | Cancer treatment, absorber in nuclear reactors | 100% |
Scandium | Alloys, ceramics, fuel cells | 100% |
Tantalum | Electronic components, superalloys | 100% |
Terbium | Permanent magnets, fiber optics, lasers | 100% |
Thulium | Metal alloys, lasers | 100% |
Ytterbium | Catalysts, scintillometers, lasers, metallurgy | 100% |
Yttrium | Ceramic, catalysts, lasers, metallurgy, phosphors | 100% |
Iridium | Coating of anodes for electrochemical processes | No data available |
Rhodium | Catalytic converters, electrical components | No data available |
Ruthenium | Electrical contacts, chip resistors in computers | No data available |
Hafnium | Nuclear control rods, alloys | Net exporter |
The challenge for the U.S. is that the local production of these raw materials is extremely limited.
For instance, in 2021 there was only one operating nickel mine in the country, the Eagle mine in Michigan. The facility ships its concentrates abroad for refining and is scheduled to close in 2025. Likewise, the country only hosted one lithium mine, the Silver Peak Mine in Nevada.
At the same time, most of the country’s supply of critical minerals depends on countries that have historically competed with America.
China’s Dominance in Minerals
Perhaps unsurprisingly, China is the single largest supply source of mineral commodities for the United States.
Cesium, a critical metal used in a wide range of manufacturing, is one example. There are only three pegmatite mines in the world that can produce cesium, and all were controlled by Chinese companies in 2021.
Furthermore, China refines nearly 90% of the world’s rare earths. Despite the name, these elements are abundant on the Earth’s crust and make up the majority of listed critical minerals. They are essential for a variety of products like EVs, advanced ceramics, computers, smartphones, wind turbines, monitors, and fiber optics.
After China, the next largest source of mineral commodities to the United States has been Canada, which provided the United States with 16 different elements in 2021.
The Rising Demand for Critical Minerals
As the world’s clean energy transitions gather pace, demand for critical minerals is expected to grow quickly.
According to the International Energy Association, the rise of low-carbon power generation is projected to triple mineral demand from this sector by 2040.
The shift to a sustainable economy is important, and consequently, securing the critical minerals necessary for it is just as vital.
Energy
Visualizing China’s Dominance in Clean Energy Metals
Despite being the world’s biggest carbon emitter, China is also a key producer of most of the critical minerals for the green revolution.

Visualizing China’s Dominance in Clean Energy Metals
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
Renewable sources of energy are expected to replace fossil fuels over the coming decades, and this large-scale transition will have a downstream effect on the demand of raw materials. More green energy means more wind turbines, solar panels, and batteries needed, and more clean energy metals necessary to build these technologies.
This visualization, based on data from the International Energy Agency (IEA), illustrates where the extraction and processing of key metals for the green revolution take place.
It shows that despite being the world’s biggest carbon polluter, China is also the largest producer of most of the world’s critical minerals for the green revolution.
Where Clean Energy Metals are Produced
China produces 60% of all rare earth elements used as components in high technology devices, including smartphones and computers.
The country also has a 13% share of the lithium production market, which is still dominated by Australia (52%) and Chile (22%). The highly reactive element is key to producing rechargeable batteries for mobile phones, laptops, and electric vehicles.
China's Share | Extraction | Processing |
---|---|---|
Copper | 8% | 40% |
Nickel | 5% | 35% |
Cobalt | 1.5% | 65% |
Rare Earths | 60% | 87% |
Lithium | 13% | 58% |
But even more than extraction, China is the dominant economy when it comes to processing operations. The country’s share of refining is around 35% for nickel, 58% for lithium, 65% for cobalt, and 87% for rare earth elements.
Despite being the largest economy in the world, the U.S. does not appear among the largest producers of any of the metals listed. To shorten the gap, the Biden administration recently launched an executive order to review the American strategy for critical and strategic materials.
It’s also worth noting that Russia also does not appear among the top producers when it comes to clean energy metals, despite being one of the world’s leading producers of minerals like copper, iron, and palladium.
Low Regulation in the Clean Metal Supply Chain
While China leads all countries in terms of cobalt processing, the metal itself is primarily extracted in the Democratic Republic of Congo (DRC). Still, Chinese interests own 15 of the 17 industrial cobalt operations in the DRC, according to a data analysis by The New York Times and Benchmark Mineral Intelligence.
Unfortunately, the DRC’s cobalt production has been criticized due to reports of corruption and lack of regulation.
Part of the Congolese cobalt comes from artisanal mines with low regulation. Of the 255,000 Congolese artisanal miners, an estimated 40,000 are children, some as young as six years old.
The Rise of Clean Energy Metals
The necessary shift from fossil fuels to renewable energy opens up interesting questions about how geopolitics, and these supply chains, will be affected.
In the race to secure raw materials needed for the green revolution, new world powers could emerge as demand for clean energy metals grows.
For now, China has the lead.
-
Technology3 weeks ago
How Do Big Tech Giants Make Their Billions?
-
Misc3 days ago
The Top 10 Largest Nuclear Explosions, Visualized
-
Green4 weeks ago
Visualizing All Electric Car Models Available in the U.S.
-
Markets4 weeks ago
Satellite Maps: Shanghai’s Supply Chain Standstill
-
Energy1 week ago
Mapped: Solar and Wind Power by Country
-
Datastream3 weeks ago
Visualizing Companies with the Most Patents Granted in 2021
-
Markets2 weeks ago
Why Investors Tuned Out Netflix
-
Automotive2 weeks ago
Timeline: The Rise, Fall, and Return of the Hummer