How AI and Big Data Will Unlock the Next Wave of Mineral Discoveries
Connect with us


How AI and Big Data Will Unlock the Next Wave of Mineral Discoveries



How AI and Big Data Will Unlock the Next Wave of Mineral Discoveries

How AI and Big Data Will Unlock the Next Mineral Discovery

Emerging technologies such as artificial intelligence (AI) and machine learning are rapidly proving their value across many industries.

Today’s infographic comes from GoldSpot Discoveries, and it shows that when this tech is applied to massive geological data sets, that there is growing potential to unlock the next wave of mineral discoveries.

Mineral Exploration: Fortunes Go to the Few

Discovering new sources of minerals, such as copper, gold, or even cobalt, can be notoriously difficult but also very rewarding. According to Goldspot, the chance of finding a new deposit is around 0.5%, with odds improving to 5% if exploration takes place near a known resource.

On the whole, mineral exploration has not been a winning prospect if you compare the total dollar spend and the actual value of the resulting discoveries.

Measuring Discovery Performance by Region (2005 to 2014)

Region Exploration SpendEstimated Value of DiscoveriesValue/Spend ratio
Australia$13 billion$13 billion0.97
Canada$25 billion$19 billion0.77
USA$10 billion$5 billion0.48
Latin America$33 billion$19 billion0.57
Pacific/SE Asia$8 billion$4 billion0.49
Africa$20 billion$23 billion1.19
Western Europe$4 billion$2 billion0.42
Rest of World$27 billion$8 billion0.32
Total$140 billion$93 billion0.57

Figures in 2014 dollars. (Source: MinEx Consulting, March 2015)

Aside from the geographic insights, on the surface this data reveals that mineral exploration does not pay for itself. That said, there are still significant discoveries worth billions of dollars – it’s just the returns go inordinately to a few small players that make big finds.

Much of the money spent on exploration may not have produced the next great discovery, but you can be sure it created massive volumes of data that could be used for further refining of exploration models.

So, What is the Problem?

Every exploration failure or success produces geological insights. The mineral exploration process is the source of massive amounts of data in the form of soil samples, chip samples, geochemistry, drill results, and assay results. Each drill hole is a tiny snapshot into the processes that form the earth.

A single drill hole can create 200 megabytes of data and when there are many drill holes coupled with other types of information, an exploration project can produce terabytes of data. If you wanted to compare your one project to hundreds of others to find the best insights, the amount of data becomes dizzying.

All these data points are clues that can be used to find new mineral deposits, but to sort through them is too much for even an entire team of capable geologists.

Luckily, using today’s technology, this data can now be used to train computers to spot the areas showing similar patterns to past discoveries.


The true power of AI will be in its ability to empower technically trained professionals to make decisions in an increasingly complex and data-driven world.

Professor Ajay Agrawal, a noted academic in AI and founder of the University of Toronto’s Creative Destruction Lab, categorizes human activities into five categories:

  1. Data collection
  2. Information retrieval
  3. Prediction
  4. Judgment
  5. Action

He concludes that machines should do the first three and that humans – such as geologists, doctors, lawyers, investment bankers and others – should make the judgment calls and take the actions based on predictive capabilities of AI.

The mineral exploration industry presents a good example of how AI and big data can help technical professionals make discoveries faster, with less money, using a wide variety of data inputs created.

Opportunity Generator and the AI-friendly Future

AI can take the large amounts of data from many different projects in order to spot the right opportunities to further explore, building on decades of geological data from projects around the world.

The right technology can help reduce the risk inherent in exploration and lead to more mineral discoveries on budget, rewarding those that deployed their data most effectively. Companies that are able to harness this power will tip the scales in their favor.

As a result, mineral exploration is no longer so much an art of interpretation – but instead, it becomes closer to a pure science, giving geologists a whole-field perspective of all the data.

Subscribe to Visual Capitalist
Click for Comments


Visualizing U.S. Consumption of Fuel and Materials per Capita

Wealthy countries consume large amounts of natural resources per capita, and the U.S. is no exception. See how much is used per person.



Visualizing U.S. Consumption of Fuel and Materials per Capita

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Wealthy countries consume massive amounts of natural resources per capita, and the United States is no exception.

According to data from the National Mining Association, each American needs more than 39,000 pounds (17,700 kg) of minerals and fossil fuels annually to maintain their standard of living.

Materials We Need to Build

Every building around us and every sidewalk we walk on is made of sand, steel, and cement.

As a result, these materials lead consumption per capita in the United States. On average, each person in America drives the demand of over 10,000 lbs of stone and around 7,000 lbs of sand and gravel per year.

Material/Fossil FuelPounds Per Person
Natural Gas9,456
Sand, Gravel7,088
Petroleum Products 6,527
Coal 3,290
Other Nonmetals569
Iron Ore239
Phosphate Rock 166
Soda Ash36
Bauxite (Aluminum)24
Other Metals 21
Total 39,291

The construction industry is a major contributor to the U.S. economy.

Crushed stone, sand, gravel, and other construction aggregates represent half of the industrial minerals produced in the country, resulting in $29 billion in revenue per year.

Also on the list are crucial hard metals such as copper, aluminum, iron ore, and of course many rarer metals used in smaller quantities each year. These rarer metals can make a big economic difference even when their uses are more concentrated and isolated—for example, palladium (primarily used in catalytic converters) costs $54 million per tonne.

Fuels Powering our Lives

Despite ongoing efforts to fight climate change and reduce carbon emissions, each person in the U.S. uses over 19,000 lbs of fossil fuels per year.

U.S. primary energy consumption by energy source, 2021

Gasoline is the most consumed petroleum product in the United States.

In 2021, finished motor gasoline consumption averaged about 369 million gallons per day, equal to about 44% of total U.S. petroleum use. Distillate fuel oil (20%), hydrocarbon gas liquids (17%), and jet fuel (7%) were the next most important uses.

Reliance on Other Countries

Over the past three decades, the United States has become reliant on foreign sources to meet domestic demand for minerals and fossil fuels. Today, the country is 100% import-reliant for 17 mineral commodities and at least 50% for 30 others.

In order to reduce the dependency on other countries, namely China, the Biden administration has been working to diversify supply chains in critical minerals. This includes strengthening alliances with other countries such as Australia, India, and Japan.

However, questions still remain about how soon these policies can make an impact, and the degree to which they can ultimately help localize and diversify supply chains.

Continue Reading