Connect with us

Mining

Everything You Need to Know on VMS Deposits

Published

on

Everything You Need to Know about VMS Deposits

Everything You Need to Know about VMS Deposits

People are often not aware of where their most prized devices really come from.

Phones, cars, and computers might not seem like the most natural objects. But the metals that make them come from natural processes deep in the earth’s crust – processes that have been going on for 3.4 billion years, and continue to this day.

Today’s visualization comes to us from Foran Mining Corp. and goes in depth to show how one type of mineral deposit, Volcanogenic Massive Sulphide or “VMS”, forms and is the primary source for many of the materials that make the modern world.

What is a VMS Deposit?

Volcanogenic Massive Sulphide (VMS) deposits are one of the richest sources of metals such as copper, lead, and zinc globally. VMS deposits can also produce economic amounts of gold and silver as byproducts of mining these deposits.

Currently, global metal production from VMS deposits account for 22% of zinc, 9.7% of lead, 6% of copper, 8.7% of silver and 2.2% of gold.

Where are VMS deposits found?

VMS deposits occur around the globe and often form in clusters or camps, following the tectonic plate boundaries in areas of ancient underwater volcanic activity.

Natural processes underway today are forming the VMS deposits of tomorrow. This gives scientists an incredible advantage in witnessing how VMS deposits form and gives a special advantage to geologists for what to look for.

Mineralization and Formation

The geological processes that form VMS deposits occur at the depths of the ocean and are associated with volcanic and/or sedimentary rocks.

At sections where the Earth’s crust is thin due to faulting or separation of tectonic plates, the magma heats up the ocean floor.

As the Earth’s crust heats up, the ground softens and allows heated magma to escape towards the ocean or crust contact, the early beginning of a volcano and the deposition of minerals into the ocean floor from magma. Also, the heated ground cracks and begins a process that draws in sea water into the crust which becomes super-heated and imbued with minerals. Black and white smokers expel this seawater back to the surface.

Black and white smokers exhale a mineral rich-plume that spreads out over the ocean floor. As it moves farther and farther away from its heat source, the plume precipitates minerals onto the ocean floor. Over time, the continual activity of the smokers and their mineral rich plumes create mineralized beds that become VMS deposits.

With the movement of the Earth’s tectonic plates, these mineral rich beds are transposed and can be found on land that was once underwater.

How Big Can VMS Deposits Get?

Current resource and historical production figures from 904 VMS deposits around the world average roughly 17 million tonnes (“Mt”), of which is approximately 1.7% copper, 3.1% zinc, and 0.7% lead.

A few giant mineral deposits (greater than 30 Mt) and several copper-rich and zinc-rich deposits of median tonnage (~2 Mt) skew the averages.

Several large VMS camps are known in Canada, including the Flin Flon, Bathurst and Noranda camps. The high-grade deposits within these camps are often in the range of five to 20 million tonnes of ore and can be much larger.

Meanwhile, approximately 90 VMS deposits have been discovered in the Iberian Pyrite Belt which runs through Portugal and Spain. Several of these are larger than 100 million tonnes, making this region one of the most significant hosts to VMS deposits in the world.

Click for Comments

Copper

Brass Rods: The Secure Choice

This graphic shows why brass rods are the secure choice for precision-machined and forged parts.

Published

on

Teaser of bar chart and pie chart highlighting three ways brass rods empower manufacturers in the competitive market for precision-machined and forged products.

Published

on

The following content is sponsored by Copper Development Association

Brass Rods: The Secure Choice

The unique combination of machinability and recyclability makes brass rods the secure choice for manufacturers seeking future-proof raw material solutions.

This infographic, from the Copper Development Association, shows three ways brass rods give manufacturers greater control and a license to grow in the competitive market for precision-machined and forged products.

Future-Proof Investments in New Machine Tools

A material’s machinability directly impacts machine throughput, which typically has the largest impact on machine shop profitability.

The high-speed machining capabilities of brass rods maximize machine tool performance, allowing manufacturers to run the material faster and longer without sacrificing tool life, chip formation, or surface quality.

The high machining efficiency of brass leads to reduced per-part costs, quicker return on investment (ROI) for new machine tools, and expanded production capacity for new projects.

Supply Security Through Closed Loop Recycling

Brass, like its parent element copper, can be infinitely recycled. 

In 2022, brass- and wire-rod mills accounted for the majority of the 830,000 tonnes of copper recycled from scrap in the United States.

Given that scrap ratios for machined parts typically range from 60-70% by weight, producing mills benefit from a secure and steady supply of clean scrap returned directly from customers, which is recycled to create new brass rods.

The high residual value of brass scrap creates a strong recycling incentive. Scrap buy back programs give manufacturers greater control over raw material net costs as scrap value is often factored into supplier purchase agreements.

Next Generation Alloys for a Lead-Free Future

Increasingly stringent global regulations continue to pressure manufacturers to minimize the use of materials containing trace amounts of lead and other harmful impurities.

The latest generation of brass-rod alloys is engineered to meet the most demanding criteria for lead leaching in drinking water and other sensitive applications.

Seven brass-rod alloys passed rigorous testing to become the only ‘Acceptable Materials’ against lower lead leaching criteria recently adopted in the national U.S. drinking water quality standard, NSF 61.

Visual Capitalist Logo

Learn more about the advantages of brass rods solutions.

Click for Comments

You may also like

Visualizing Asia's Water Dilemma

Subscribe

Continue Reading
Visualizing Asia's Water Dilemma

Subscribe

Popular