Connect with us

Base Metals

Everything You Need to Know on VMS Deposits

Published

on

Everything You Need to Know about VMS Deposits

Everything You Need to Know about VMS Deposits

People are often not aware of where their most prized devices really come from.

Phones, cars, and computers might not seem like the most natural objects. But the metals that make them come from natural processes deep in the earth’s crust – processes that have been going on for 3.4 billion years, and continue to this day.

Today’s visualization comes to us from Foran Mining Corp. and goes in depth to show how one type of mineral deposit, Volcanogenic Massive Sulphide or “VMS”, forms and is the primary source for many of the materials that make the modern world.

What is a VMS Deposit?

Volcanogenic Massive Sulphide (VMS) deposits are one of the richest sources of metals such as copper, lead, and zinc globally. VMS deposits can also produce economic amounts of gold and silver as byproducts of mining these deposits.

Currently, global metal production from VMS deposits account for 22% of zinc, 9.7% of lead, 6% of copper, 8.7% of silver and 2.2% of gold.

Where are VMS deposits found?

VMS deposits occur around the globe and often form in clusters or camps, following the tectonic plate boundaries in areas of ancient underwater volcanic activity.

Natural processes underway today are forming the VMS deposits of tomorrow. This gives scientists an incredible advantage in witnessing how VMS deposits form and gives a special advantage to geologists for what to look for.

Mineralization and Formation

The geological processes that form VMS deposits occur at the depths of the ocean and are associated with volcanic and/or sedimentary rocks.

At sections where the Earth’s crust is thin due to faulting or separation of tectonic plates, the magma heats up the ocean floor.

As the Earth’s crust heats up, the ground softens and allows heated magma to escape towards the ocean or crust contact, the early beginning of a volcano and the deposition of minerals into the ocean floor from magma. Also, the heated ground cracks and begins a process that draws in sea water into the crust which becomes super-heated and imbued with minerals. Black and white smokers expel this seawater back to the surface.

Black and white smokers exhale a mineral rich-plume that spreads out over the ocean floor. As it moves farther and farther away from its heat source, the plume precipitates minerals onto the ocean floor. Over time, the continual activity of the smokers and their mineral rich plumes create mineralized beds that become VMS deposits.

With the movement of the Earth’s tectonic plates, these mineral rich beds are transposed and can be found on land that was once underwater.

How Big Can VMS Deposits Get?

Current resource and historical production figures from 904 VMS deposits around the world average roughly 17 million tonnes (“Mt”), of which is approximately 1.7% copper, 3.1% zinc, and 0.7% lead.

A few giant mineral deposits (greater than 30 Mt) and several copper-rich and zinc-rich deposits of median tonnage (~2 Mt) skew the averages.

Several large VMS camps are known in Canada, including the Flin Flon, Bathurst and Noranda camps. The high-grade deposits within these camps are often in the range of five to 20 million tonnes of ore and can be much larger.

Meanwhile, approximately 90 VMS deposits have been discovered in the Iberian Pyrite Belt which runs through Portugal and Spain. Several of these are larger than 100 million tonnes, making this region one of the most significant hosts to VMS deposits in the world.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Comments

Base Metals

20 Common Metal Alloys and What They’re Made Of

You can’t find stainless steel, brass, sterling silver, or white gold on the periodic table. Learn about 20 common metal alloys, and what they are made from.

Published

on

Every day, you’re likely to encounter metals that cannot be found anywhere on the periodic table.

You may play a brass instrument while wearing a white gold necklace – or maybe you cook with a cast iron skillet and store your leftovers in a stainless steel refrigerator.

It’s likely that you know these common metal alloys by name, and you can probably even imagine what they look and feel like. But do you know what base metals these alloys are made of, exactly?

Common Metal Alloys

Today’s infographic comes to us from Alan’s Factory Outlet, and it breaks down metal and non-metal components that go into popular metal alloys.

In total, 20 alloys are highlighted, and they range from household names (i.e. bronze, sterling silver) to lesser-known metals that are crucial for industrial purposes (i.e. solder, gunmetal, magnox).

20 Common Metal Alloys and What They

Humans make metal alloys for various reasons.

Some alloys have long-standing historical significance. For example, electrum is a naturally-occurring alloy of gold and silver (with trace amounts of copper) that was used to make the very first metal coins in ancient history.

However, most of the common metal alloys on the above list are actually human inventions that are used to achieve practical purposes. Some were innovated by brilliant metallurgists, while others were discovered by fluke, but they’ve all had an ongoing impact on our species over time.

Alloys with an Impact

The Bronze Age (3,000 BC – 1,200 BC) is an important historical period that is rightfully named after one game-changing development: the ability to use bronze. This alloy, made from copper and tin, was extremely useful to our ancestors because it is much stronger and harder than its component metals.

Steel is another great example of an alloy that has changed the world. It is one of the most important and widely-used metals today. Without steel, modern civilization (skyscrapers, bridges, etc.) simply wouldn’t be possible.

While nobody knows exactly who invented steel, the alloy has a widely-known cousin that was likely invented in somewhat accidental circumstances.

In 1912, English metallurgist Harry Brearley had been tasked with finding a more erosion-resistant steel for a small arms manufacturer, trying many variations of alloys with none seeming to be suitable. However, in his scrap metal heap – where almost all of the metals he tried were rusting – there was one gun barrel that remained astonishingly untouched.

The metal alloy – now known to the world as stainless steel – was a step forward in creating a corrosion-resistant steel that is now used in many applications ranging from medical uses to heavy industry.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Base Metals

How AI and Big Data Will Unlock the Next Wave of Mineral Discoveries

Mineral exploration produces massive amounts of data. With AI, geologists can produce geological insights from this data to make the next discovery.

Published

on

How AI and Big Data Will Unlock the Next Mineral Discovery

Emerging technologies such as artificial intelligence (AI) and machine learning are rapidly proving their value across many industries.

Today’s infographic comes from GoldSpot Discoveries, and it shows that when this tech is applied to massive geological data sets, that there is growing potential to unlock the next wave of mineral discoveries.

Mineral Exploration: Fortunes Go to the Few

Discovering new sources of minerals, such as copper, gold, or even cobalt, can be notoriously difficult but also very rewarding. According to Goldspot, the chance of finding a new deposit is around 0.5%, with odds improving to 5% if exploration takes place near a known resource.

On the whole, mineral exploration has not been a winning prospect if you compare the total dollar spend and the actual value of the resulting discoveries.

Measuring Discovery Performance by Region (2005 to 2014)

Region Exploration SpendEstimated Value of DiscoveriesValue/Spend ratio
Australia$13 billion$13 billion0.97
Canada$25 billion$19 billion0.77
USA$10 billion$5 billion0.48
Latin America$33 billion$19 billion0.57
Pacific/SE Asia$8 billion$4 billion0.49
Africa$20 billion$23 billion1.19
Western Europe$4 billion$2 billion0.42
Rest of World$27 billion$8 billion0.32
Total$140 billion$93 billion0.57

Figures in 2014 dollars. (Source: MinEx Consulting, March 2015)

Aside from the geographic insights, on the surface this data reveals that mineral exploration does not pay for itself. That said, there are still significant discoveries worth billions of dollars – it’s just the returns go inordinately to a few small players that make big finds.

Much of the money spent on exploration may not have produced the next great discovery, but you can be sure it created massive volumes of data that could be used for further refining of exploration models.

So, What is the Problem?

Every exploration failure or success produces geological insights. The mineral exploration process is the source of massive amounts of data in the form of soil samples, chip samples, geochemistry, drill results, and assay results. Each drill hole is a tiny snapshot into the processes that form the earth.

A single drill hole can create 200 megabytes of data and when there are many drill holes coupled with other types of information, an exploration project can produce terabytes of data. If you wanted to compare your one project to hundreds of others to find the best insights, the amount of data becomes dizzying.

All these data points are clues that can be used to find new mineral deposits, but to sort through them is too much for even an entire team of capable geologists.

Luckily, using today’s technology, this data can now be used to train computers to spot the areas showing similar patterns to past discoveries.

AI-Assistance

The true power of AI will be in its ability to empower technically trained professionals to make decisions in an increasingly complex and data-driven world.

Professor Ajay Agrawal, a noted academic in AI and founder of the University of Toronto’s Creative Destruction Lab, categorizes human activities into five categories:

  1. Data collection
  2. Information retrieval
  3. Prediction
  4. Judgment
  5. Action

He concludes that machines should do the first three and that humans – such as geologists, doctors, lawyers, investment bankers and others – should make the judgment calls and take the actions based on predictive capabilities of AI.

The mineral exploration industry presents a good example of how AI and big data can help technical professionals make discoveries faster, with less money, using a wide variety of data inputs created.

Opportunity Generator and the AI-friendly Future

AI can take the large amounts of data from many different projects in order to spot the right opportunities to further explore, building on decades of geological data from projects around the world.

The right technology can help reduce the risk inherent in exploration and lead to more mineral discoveries on budget, rewarding those that deployed their data most effectively. Companies that are able to harness this power will tip the scales in their favor.

As a result, mineral exploration is no longer so much an art of interpretation – but instead, it becomes closer to a pure science, giving geologists a whole-field perspective of all the data.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Choom Company Spotlight

Subscribe

Join the 100,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular