Energy
A Visual Crash Course on Geothermal Energy
Subscribe to the Elements free mailing list for more like this
A Visual Crash Course on Geothermal Energy
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
Geothermal is a lesser-known type of renewable energy that uses heat from the Earth’s molten core to produce electricity.
While this unique feature gives it key benefits over solar and wind, it also suffers from high costs and geographic restrictions. Because of this, few countries have managed to produce geothermal energy at scale.
In this infographic, we’ve used a combination of diagrams and charts to give you a high level overview of this sustainable energy source.
How Geothermal Works
Geothermal energy is produced by accessing reservoirs of hot water that are found several miles below the earth’s surface. In certain parts of the planet, this water naturally breaks through the surface, creating what’s known as a hot spring (or in some cases, a geyser).
When accessed via a well, this pressurized water rises up and rapidly expands into steam. That steam is used to spin a turbine, which then drives an electric generator.
Further along the process, excess steam is condensed back into water as it passes through a cooling tower. An injection well pumps this water back into the Earth to ensure sustainability.
Where Is Geothermal Energy Being Used?
As of 2021, global geothermal power generation amounted to 16 gigawatts (GW). Only a handful of countries have surpassed the 1GW milestone.
Country | Installed Capacity (GW) |
---|---|
🇺🇸 U.S. | 3.7 |
🇮🇩 Indonesia | 2.3 |
🇵🇠Philippines | 1.9 |
🇹🇷 Turkey | 1.7 |
🇳🇿 New Zealand | 1 |
🇲🇽 Mexico | 1 |
🇮🇹 Italy | 0.9 |
🇰🇪 Kenya | 0.9 |
🇮🇸 Iceland | 0.8 |
🇯🇵 Japan | 0.6 |
🌎 Rest of World | 1.1 |
To give these numbers context, consider the following datapoints:
- America’s 3.7 GW capacity is split across 61 geothermal plants.
- The world’s largest solar plant, the Bhadla Solar Park, has a maximum output of 2.2 GW
- The world’s largest hydroelectric plant, the Three Gorges Dam, can produce up to 22.5 GW
While geothermal plants clearly produce less power, they do have benefits over other types of renewables. For example, geothermal energy is not impacted by day-night cycles, weather conditions, or seasons.
The Big Picture
We now look at a second dataset, which shows the global contribution of each type of renewable energy. These figures are as of April 2022, and were sourced from the International Renewable Energy Agency (IRENA).
Type | Installed Capacity (% of total) | Installed Capacity (GW) |
---|---|---|
Hydro | 40% | 1226 |
Solar | 28% | 858 |
Wind | 27% | 827 |
Others (Geothermal) | 5% (0.5%) | 153 (15*) |
Total | 100% | 3064 |
*Geothermal’s total capacity in this dataset differs from the previous value of 16GW. This is due to differing sources and rounding.
One reason for the slow adoption of geothermal energy is that they can only be built in regions that have suitable geological features (such as places where there is volcanic activity).
To expand on that point, consider the following data from Fitch Solutions, which shows the forecasted growth of geothermal energy capacity by region.
Fitch believes that over the next decade, the majority of new geothermal capacity will be installed in Asia. On the flipside, investment in North America and Western Europe (NAWE) is expected to decrease.
Over the coming years, NAWE will experience a gradual slowdown in geothermal capacity additions as we expect that investments will be crowded out by cheaper wind and solar projects.
– Fitch Solutions
The top markets for geothermal are expected to be Indonesia, the Philippines, and New Zealand, which all lie along the Pacific Ring of Fire. The Ring of Fire is a path along the Pacific Ocean where the majority of volcanic activity occurs.
Uranium
Visualizing the Uranium Mining Industry in 3 Charts
These visuals highlight the uranium mining industry and its output, as well as the trajectory of nuclear energy from 1960 to today.

When uranium was discovered in 1789 by Martin Heinrich Klaproth, it’s likely the German chemist didn’t know how important the element would become to human life.
Used minimally in glazing and ceramics, uranium was originally mined as a byproduct of producing radium until the late 1930s. However, the discovery of nuclear fission, and the potential promise of nuclear power, changed everything.
What’s the current state of the uranium mining industry? This series of charts from Truman Du highlights production and the use of uranium using 2021 data from the World Nuclear Association (WNA) and Our World in Data.
Who are the Biggest Uranium Miners in the World?
Most of the world’s biggest uranium suppliers are based in countries with the largest uranium deposits, like Australia, Kazakhstan, and Canada.
The largest of these companies is Kazatomprom, a Kazakhstani state-owned company that produced 25% of the world’s new uranium supply in 2021.
As seen in the above chart, 94% of the roughly 48,000 tonnes of uranium mined globally in 2021 came from just 13 companies.
Rank | Company | 2021 Uranium Production (tonnes) | Percent of Total |
---|---|---|---|
1 | 🇰🇿 Kazatomprom | 11,858 | 25% |
2 | 🇫🇷 Orano | 4,541 | 9% |
3 | 🇷🇺 Uranium One | 4,514 | 9% |
4 | 🇨🇦 Cameco | 4,397 | 9% |
5 | 🇨🇳 CGN | 4,112 | 9% |
6 | 🇺🇿 Navoi Mining | 3,500 | 7% |
7 | 🇨🇳 CNNC | 3,562 | 7% |
8 | 🇷🇺 ARMZ | 2,635 | 5% |
9 | 🇦🇺 General Atomics/Quasar | 2,241 | 5% |
10 | 🇦🇺 BHP | 1,922 | 4% |
11 | 🇬🇧 Energy Asia | 900 | 2% |
12 | 🇳🇪 Sopamin | 809 | 2% |
13 | 🇺🇦 VostGok | 455 | 1% |
14 | Other | 2,886 | 6% |
Total | 48,332 | 100% |
France’s Orano, another state-owned company, was the world’s second largest producer of uranium at 4,541 tonnes.
Companies rounding out the top five all had similar uranium production numbers to Orano, each contributing around 9% of the global total. Those include Uranium One from Russia, Cameco from Canada, and CGN in China.
Where are the Largest Uranium Mines Found?
The majority of uranium deposits around the world are found in 16 countries with Australia, Kazakhstan, and Canada accounting for for nearly 40% of recoverable uranium reserves.
But having large reserves doesn’t necessarily translate to uranium production numbers. For example, though Australia has the biggest single deposit of uranium (Olympic Dam) and the largest reserves overall, the country ranks fourth in uranium supplied, coming in at 9%.
Here are the top 10 uranium mines in the world, accounting for 53% of the world’s supply.
Of the largest mines in the world, four are found in Kazakhstan. Altogether, uranium mined in Kazakhstan accounted for 45% of the world’s uranium supply in 2021.
Uranium Mine | Country | Main Owner | 2021 Production |
---|---|---|---|
Cigar Lake | 🇨🇦 Canada | Cameco/Orano | 4,693t |
Inkai 1-3 | 🇰🇿 Kazakhstan | Kazaktomprom/Cameco | 3,449t |
Husab | 🇳🇦 Namibia | Swakop Uranium (CGN) | 3,309t |
Karatau (Budenovskoye 2) | 🇰🇿 Kazakhstan | Uranium One/Kazatomprom | 2,561t |
Rössing | 🇳🇦 Namibia | CNNC | 2,444t |
Four Mile | 🇦🇺 Australia | Quasar | 2,241t |
SOMAIR | 🇳🇪 Niger | Orano | 1,996t |
Olympic Dam | 🇦🇺 Australia | BHP Billiton | 1,922t |
Central Mynkuduk | 🇰🇿 Kazakhstan | Ortalyk | 1,579t |
Kharasan 1 | 🇰🇿 Kazakhstan | Kazatomprom/Uranium One | 1,579t |
Namibia, which has two of the five largest uranium mines in operation, is the second largest supplier of uranium by country, at 12%, followed by Canada at 10%.
Interestingly, the owners of these mines are not necessarily local. For example, France’s Orano operates mines in Canada and Niger. Russia’s Uranium One operates mines in Kazakhstan, the U.S., and Tanzania. China’s CGN owns mines in Namibia.
And despite the African continent holding a sizable amount of uranium reserves, no African company placed in the top 10 biggest companies by production. Sopamin from Niger was the highest ranked at #12 with 809 tonnes mined.
Uranium Mining and Nuclear Energy
Uranium mining has changed drastically since the first few nuclear power plants came online in the 1950s.
For 30 years, uranium production grew steadily due to both increasing demand for nuclear energy and expanding nuclear arsenals, eventually peaking at 69,692 tonnes mined in 1980 at the height of the Cold War.
Nuclear energy production (measured in terawatt-hours) also rose consistently until the 21st century, peaking in 2001 when it contributed nearly 7% to the world’s energy supply. But in the years following, it started to drop and flatline.
By 2021, nuclear energy had fallen to 4.3% of global energy production. Several nuclear accidents—Chernobyl, Three Mile Island, and Fukushima—contributed to turning sentiment against nuclear energy.
Year | Nuclear Energy Production | % of Total Energy |
---|---|---|
1965 | 72 TWh | 0.2% |
1966 | 98 TWh | 0.2% |
1967 | 116 TWh | 0.2% |
1968 | 148 TWh | 0.3% |
1969 | 175 TWh | 0.3% |
1970 | 224 TWh | 0.4% |
1971 | 311 TWh | 0.5% |
1972 | 432 TWh | 0.7% |
1973 | 579 TWh | 0.9% |
1974 | 756 TWh | 1.1% |
1975 | 1,049 TWh | 1.6% |
1976 | 1,228 TWh | 1.7% |
1977 | 1,528 TWh | 2.1% |
1978 | 1,776 TWh | 2.3% |
1979 | 1,847 TWh | 2.4% |
1980 | 2,020 TWh | 2.6% |
1981 | 2,386 TWh | 3.1% |
1982 | 2,588 TWh | 3.4% |
1983 | 2,933 TWh | 3.7% |
1984 | 3,560 TWh | 4.3% |
1985 | 4,225 TWh | 5% |
1986 | 4,525 TWh | 5.3% |
1987 | 4,922 TWh | 5.5% |
1988 | 5,366 TWh | 5.8% |
1989 | 5,519 TWh | 5.8% |
1990 | 5,676 TWh | 5.9% |
1991 | 5,948 TWh | 6.2% |
1992 | 5,993 TWh | 6.2% |
1993 | 6,199 TWh | 6.4% |
1994 | 6,316 TWh | 6.4% |
1995 | 6,590 TWh | 6.5% |
1996 | 6,829 TWh | 6.6% |
1997 | 6,782 TWh | 6.5% |
1998 | 6,899 TWh | 6.5% |
1999 | 7,162 TWh | 6.7% |
2000 | 7,323 TWh | 6.6% |
2001 | 7,481 TWh | 6.7% |
2002 | 7,552 TWh | 6.6% |
2003 | 7,351 TWh | 6.2% |
2004 | 7,636 TWh | 6.2% |
2005 | 7,608 TWh | 6% |
2006 | 7,654 TWh | 5.8% |
2007 | 7,452 TWh | 5.5% |
2008 | 7,382 TWh | 5.4% |
2009 | 7,233 TWh | 5.4% |
2010 | 7,374 TWh | 5.2% |
2011 | 7,022 TWh | 4.9% |
2012 | 6,501 TWh | 4.4% |
2013 | 6,513 TWh | 4.4% |
2014 | 6,607 TWh | 4.4% |
2015 | 6,656 TWh | 4.4% |
2016 | 6,715 TWh | 4.3% |
2017 | 6,735 TWh | 4.3% |
2018 | 6,856 TWh | 4.2% |
2019 | 7,073 TWh | 4.3% |
2020 | 6,789 TWh | 4.3% |
2021 | 7,031 TWh | 4.3% |
More recently, a return to nuclear energy has gained some support as countries push for transitions to cleaner energy, since nuclear power generates no direct carbon emissions.
What’s Next for Nuclear Energy?
Nuclear remains one of the least harmful sources of energy, and some countries are pursuing advancements in nuclear tech to fight climate change.
Small, modular nuclear reactors are one of the current proposed solutions to both bring down costs and reduce construction time of nuclear power plants. The benefits include smaller capital investments and location flexibility by trading off energy generation capacity.
With countries having to deal with aging nuclear reactors and climate change at the same time, replacements need to be considered. Will they come in the form of new nuclear power and uranium mining, or alternative sources of energy?
-
Politics2 weeks ago
Charting the Rise of America’s Debt Ceiling
-
Money3 weeks ago
Comparing the Speed of Interest Rate Hikes (1988-2023)
-
Urbanization2 weeks ago
Ranked: The Cities with the Most Skyscrapers in 2023
-
War3 weeks ago
Map Explainer: Sudan
-
Urbanization1 week ago
Ranked: The World’s Biggest Steel Producers, by Country
-
Misc3 weeks ago
Visualized: The World’s Busiest Airports, by Passenger Count
-
Visual Capitalist6 days ago
Join Us For Data Creator Con 2023
-
Technology3 weeks ago
Visualizing Global Attitudes Towards AI