Mining
The 50 Minerals Critical to U.S. Security
Subscribe to the Elements free mailing list for more like this
The 50 Minerals Critical to U.S. Security
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
The U.S. aims to cut its greenhouse gas emissions in half by 2030 as part of its commitment to tackling climate change, but might be lacking the critical minerals needed to achieve its goals.
The American green economy will rely on renewable sources of energy like wind and solar, along with the electrification of transportation. However, local production of the raw materials necessary to produce these technologies, including solar panels, wind turbines, and electric vehicles, is lacking. Understandably, this has raised concerns in Washington.
In this graphic, based on data from the U.S. Geological Survey, we list all of the minerals that the government has deemed critical to both the economic and national security of the United States.
What are Critical Minerals?
A critical mineral is defined as a non-fuel material considered vital for the economic well-being of the world’s major and emerging economies, whose supply may be at risk. This can be due to geological scarcity, geopolitical issues, trade policy, or other factors.
In 2018, the U.S. Department of the Interior released a list of 35 critical minerals. The new list, released in February 2022, contains 15 more commodities.
Much of the increase in the new list is the result of splitting the rare earth elements and platinum group elements into individual entries rather than including them as “mineral groups.” In addition, the 2022 list of critical minerals adds nickel and zinc to the list while removing helium, potash, rhenium, and strontium.
Mineral | Example Uses | Net Import Reliance |
---|---|---|
Beryllium | Alloying agent in aerospace, defense industries | 11% |
Aluminum | Power lines, construction, electronics | 13% |
Zirconium | High-temparature ceramics production | 25% |
Palladium | Catalytic converters | 40% |
Germanium | Fiber optics, night vision applications | 50% |
Lithium | Rechargeable batteries | 50% |
Magnesium | Alloys, electronics | 50% |
Nickel | Stainless steel, rechargeable batteries | 50% |
Tungsten | Wear-resistant metals | 50% |
Barite | Hydrocarbon production | 75% |
Chromium | Stainless steel | 75% |
Tin | Coatings, alloys for steel | 75% |
Cobalt | Rechargeable batteries, superalloys | 76% |
Platinum | Catalytic converters | 79% |
Antimony | Lead-acid batteries, flame retardants | 81% |
Zinc | Metallurgy to produce galvanized steel | 83% |
Titanium | White pigment, metal alloys | 88% |
Bismuth | Medical, atomic research | 94% |
Tellurium | Solar cells, thermoelectric devices | 95% |
Vanadium | Alloying agent for iron and steel | 96% |
Arsenic | Semi-conductors, lumber preservatives, pesticides | 100% |
Cerium | Catalytic converters, ceramics, glass, metallurgy | 100% |
Cesium | Research, development | 100% |
Dysprosium | Data storage devices, lasers | 100% |
Erbium | Fiber optics, optical amplifiers, lasers | 100% |
Europium | Phosphors, nuclear control rods | 100% |
Fluorspar | Manufacture of aluminum, cement, steel, gasoline | 100% |
Gadolinium | Medical imaging, steelmaking | 100% |
Gallium | Integrated circuits, LEDs | 100% |
Graphite | Lubricants, batteries | 100% |
Holmium | Permanent magnets, nuclear control rods | 100% |
Indium | Liquid crystal display screens | 100% |
Lanthanum | Catalysts, ceramics, glass, polishing compounds | 100% |
Lutetium | Scintillators for medical imaging, cancer therapies | 100% |
Manganese | Steelmaking, batteries | 100% |
Neodymium | Rubber catalysts, medical, industrial lasers | 100% |
Niobium | Steel, superalloys | 100% |
Praseodymium | Permanent magnets, batteries, aerospace alloys | 100% |
Rubidium | Research, development in electronics | 100% |
Samarium | Cancer treatment, absorber in nuclear reactors | 100% |
Scandium | Alloys, ceramics, fuel cells | 100% |
Tantalum | Electronic components, superalloys | 100% |
Terbium | Permanent magnets, fiber optics, lasers | 100% |
Thulium | Metal alloys, lasers | 100% |
Ytterbium | Catalysts, scintillometers, lasers, metallurgy | 100% |
Yttrium | Ceramic, catalysts, lasers, metallurgy, phosphors | 100% |
Iridium | Coating of anodes for electrochemical processes | No data available |
Rhodium | Catalytic converters, electrical components | No data available |
Ruthenium | Electrical contacts, chip resistors in computers | No data available |
Hafnium | Nuclear control rods, alloys | Net exporter |
The challenge for the U.S. is that the local production of these raw materials is extremely limited.
For instance, in 2021 there was only one operating nickel mine in the country, the Eagle mine in Michigan. The facility ships its concentrates abroad for refining and is scheduled to close in 2025. Likewise, the country only hosted one lithium mine, the Silver Peak Mine in Nevada.
At the same time, most of the country’s supply of critical minerals depends on countries that have historically competed with America.
China’s Dominance in Minerals
Perhaps unsurprisingly, China is the single largest supply source of mineral commodities for the United States.
Cesium, a critical metal used in a wide range of manufacturing, is one example. There are only three pegmatite mines in the world that can produce cesium, and all were controlled by Chinese companies in 2021.
Furthermore, China refines nearly 90% of the world’s rare earths. Despite the name, these elements are abundant on the Earth’s crust and make up the majority of listed critical minerals. They are essential for a variety of products like EVs, advanced ceramics, computers, smartphones, wind turbines, monitors, and fiber optics.
After China, the next largest source of mineral commodities to the United States has been Canada, which provided the United States with 16 different elements in 2021.
The Rising Demand for Critical Minerals
As the world’s clean energy transitions gather pace, demand for critical minerals is expected to grow quickly.
According to the International Energy Association, the rise of low-carbon power generation is projected to triple mineral demand from this sector by 2040.
The shift to a sustainable economy is important, and consequently, securing the critical minerals necessary for it is just as vital.
Support the Future of Data Storytelling
Sorry to interrupt your reading, but we have a favor to ask. At Visual Capitalist we believe in a world where data can be understood by everyone. That’s why we want to build the VC App - the first app of its kind combining verifiable and transparent data with beautiful, memorable visuals. All available for free.
As a small, independent media company we don’t have the expertise in-house or the funds to build an app like this. So we’re asking our community to help us raise funds on Kickstarter.
If you believe in data-driven storytelling, join the movement and back us on Kickstarter!
Thank you.

Mining
Mapped: The 10 Largest Gold Mines in the World, by Production
Gold mining companies produced over 3,500 tonnes of gold in 2021. Where in the world are the largest gold mines?

The 10 Largest Gold Mines in the World, by Production
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
Gold mining is a global business, with hundreds of mining companies digging for the precious metal in dozens of countries.
But where exactly are the largest gold mines in the world?
The above infographic uses data compiled from S&P Global Market Intelligence and company reports to map the top 10 gold-producing mines in 2021.
Editor’s Note: The article uses publicly available global production data from the World Gold Council to calculate the production share of each mine. The percentages slightly differ from those calculated by S&P.
The Top Gold Mines in 2021
The 10 largest gold mines are located across nine different countries in North America, Oceania, Africa, and Asia.
Together, they accounted for around 13 million ounces or 12% of global gold production in 2021.
Rank | Mine | Location | Production (ounces) | % of global production |
---|---|---|---|---|
#1 | Nevada Gold Mines | 🇺🇸 U.S. | 3,311,000 | 2.9% |
#2 | Muruntau | 🇺🇿 Uzbekistan | 2,990,020 | 2.6% |
#3 | Grasberg | 🇮🇩 Indonesia | 1,370,000 | 1.2% |
#4 | Olimpiada | 🇷🇺 Russia | 1,184,068 | 1.0% |
#5 | Pueblo Viejo | 🇩🇴 Dominican Republic | 814,000 | 0.7% |
#6 | Kibali | 🇨🇩 Democratic Republic of the Congo | 812,000 | 0.7% |
#7 | Cadia | 🇦🇺 Australia | 764,895 | 0.7% |
#8 | Lihir | 🇵🇬 Papua New Guinea | 737,082 | 0.6% |
#9 | Canadian Malartic | 🇨🇦 Canada | 714,784 | 0.6% |
#10 | Boddington | 🇦🇺 Australia | 696,000 | 0.6% |
N/A | Total | N/A | 13,393,849 | 11.7% |
Share of global gold production is based on 3,561 tonnes (114.5 million troy ounces) of 2021 production as per the World Gold Council.
In 2019, the world’s two largest gold miners—Barrick Gold and Newmont Corporation—announced a historic joint venture combining their operations in Nevada. The resulting joint corporation, Nevada Gold Mines, is now the world’s largest gold mining complex with six mines churning out over 3.3 million ounces annually.
Uzbekistan’s state-owned Muruntau mine, one of the world’s deepest open-pit operations, produced just under 3 million ounces, making it the second-largest gold mine. Muruntau represents over 80% of Uzbekistan’s overall gold production.
Only two other mines—Grasberg and Olimpiada—produced more than 1 million ounces of gold in 2021. Grasberg is not only the third-largest gold mine but also one of the largest copper mines in the world. Olimpiada, owned by Russian gold mining giant Polyus, holds around 26 million ounces of gold reserves.
Polyus was also recently crowned the biggest miner in terms of gold reserves globally, holding over 104 million ounces of proven and probable gold between all deposits.
How Profitable is Gold Mining?
The price of gold is up by around 50% since 2016, and it’s hovering near the all-time high of $2,000/oz.
That’s good news for gold miners, who achieved record-high profit margins in 2020. For every ounce of gold produced in 2020, gold miners pocketed $828 on average, significantly higher than the previous high of $666/oz set in 2011.
With inflation rates hitting decade-highs in several countries, gold mining could be a sector to watch, especially given gold’s status as a traditional inflation hedge.
Energy
Visualizing China’s Dominance in Clean Energy Metals
Despite being the world’s biggest carbon emitter, China is also a key producer of most of the critical minerals for the green revolution.

Visualizing China’s Dominance in Clean Energy Metals
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
Renewable sources of energy are expected to replace fossil fuels over the coming decades, and this large-scale transition will have a downstream effect on the demand of raw materials. More green energy means more wind turbines, solar panels, and batteries needed, and more clean energy metals necessary to build these technologies.
This visualization, based on data from the International Energy Agency (IEA), illustrates where the extraction and processing of key metals for the green revolution take place.
It shows that despite being the world’s biggest carbon polluter, China is also the largest producer of most of the world’s critical minerals for the green revolution.
Where Clean Energy Metals are Produced
China produces 60% of all rare earth elements used as components in high technology devices, including smartphones and computers.
The country also has a 13% share of the lithium production market, which is still dominated by Australia (52%) and Chile (22%). The highly reactive element is key to producing rechargeable batteries for mobile phones, laptops, and electric vehicles.
China's Share | Extraction | Processing |
---|---|---|
Copper | 8% | 40% |
Nickel | 5% | 35% |
Cobalt | 1.5% | 65% |
Rare Earths | 60% | 87% |
Lithium | 13% | 58% |
But even more than extraction, China is the dominant economy when it comes to processing operations. The country’s share of refining is around 35% for nickel, 58% for lithium, 65% for cobalt, and 87% for rare earth elements.
Despite being the largest economy in the world, the U.S. does not appear among the largest producers of any of the metals listed. To shorten the gap, the Biden administration recently launched an executive order to review the American strategy for critical and strategic materials.
It’s also worth noting that Russia also does not appear among the top producers when it comes to clean energy metals, despite being one of the world’s leading producers of minerals like copper, iron, and palladium.
Low Regulation in the Clean Metal Supply Chain
While China leads all countries in terms of cobalt processing, the metal itself is primarily extracted in the Democratic Republic of Congo (DRC). Still, Chinese interests own 15 of the 17 industrial cobalt operations in the DRC, according to a data analysis by The New York Times and Benchmark Mineral Intelligence.
Unfortunately, the DRC’s cobalt production has been criticized due to reports of corruption and lack of regulation.
Part of the Congolese cobalt comes from artisanal mines with low regulation. Of the 255,000 Congolese artisanal miners, an estimated 40,000 are children, some as young as six years old.
The Rise of Clean Energy Metals
The necessary shift from fossil fuels to renewable energy opens up interesting questions about how geopolitics, and these supply chains, will be affected.
In the race to secure raw materials needed for the green revolution, new world powers could emerge as demand for clean energy metals grows.
For now, China has the lead.
-
Money2 weeks ago
Mapping the Migration of the World’s Millionaires
-
Markets2 weeks ago
Visualizing the Coming Shift in Global Economic Power (2006-2036p)
-
Datastream3 weeks ago
Ranked: These Are 10 of the World’s Least Affordable Housing Markets
-
Demographics2 weeks ago
Mapped: A Decade of Population Growth and Decline in U.S. Counties
-
Misc3 weeks ago
Visualizing Well-Known Airlines by Fleet Composition
-
Markets4 weeks ago
Ranked: Visualizing the Largest Trading Partners of the U.S.
-
Misc1 week ago
Iconic Infographic Map Compares the World’s Mountains and Rivers
-
Energy2 weeks ago
Explainer: What Drives Gasoline Prices?