Visualizing the 50 Minerals Critical to U.S. Security
Connect with us

Mining

The 50 Minerals Critical to U.S. Security

Published

on

Subscribe to the Elements free mailing list for more like this

The-Minerals-Critical-to-U.S.-Security

The 50 Minerals Critical to U.S. Security

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

The U.S. aims to cut its greenhouse gas emissions in half by 2030 as part of its commitment to tackling climate change, but might be lacking the critical minerals needed to achieve its goals.

The American green economy will rely on renewable sources of energy like wind and solar, along with the electrification of transportation. However, local production of the raw materials necessary to produce these technologies, including solar panels, wind turbines, and electric vehicles, is lacking. Understandably, this has raised concerns in Washington.

In this graphic, based on data from the U.S. Geological Survey, we list all of the minerals that the government has deemed critical to both the economic and national security of the United States.

What are Critical Minerals?

A critical mineral is defined as a non-fuel material considered vital for the economic well-being of the world’s major and emerging economies, whose supply may be at risk. This can be due to geological scarcity, geopolitical issues, trade policy, or other factors.

In 2018, the U.S. Department of the Interior released a list of 35 critical minerals. The new list, released in February 2022, contains 15 more commodities.

Much of the increase in the new list is the result of splitting the rare earth elements and platinum group elements into individual entries rather than including them as “mineral groups.” In addition, the 2022 list of critical minerals adds nickel and zinc to the list while removing helium, potash, rhenium, and strontium.

Mineral Example UsesNet Import Reliance
BerylliumAlloying agent in aerospace, defense industries 11%
AluminumPower lines, construction, electronics 13%
ZirconiumHigh-temparature ceramics production 25%
PalladiumCatalytic converters40%
GermaniumFiber optics, night vision applications50%
LithiumRechargeable batteries 50%
MagnesiumAlloys, electronics 50%
NickelStainless steel, rechargeable batteries 50%
TungstenWear-resistant metals50%
BariteHydrocarbon production75%
ChromiumStainless steel75%
TinCoatings, alloys for steel 75%
CobaltRechargeable batteries, superalloys76%
PlatinumCatalytic converters 79%
AntimonyLead-acid batteries, flame retardants 81%
ZincMetallurgy to produce galvanized steel 83%
TitaniumWhite pigment, metal alloys88%
BismuthMedical, atomic research 94%
TelluriumSolar cells, thermoelectric devices95%
VanadiumAlloying agent for iron and steel96%
ArsenicSemi-conductors, lumber preservatives, pesticides 100%
CeriumCatalytic converters, ceramics, glass, metallurgy100%
CesiumResearch, development100%
DysprosiumData storage devices, lasers100%
ErbiumFiber optics, optical amplifiers, lasers100%
EuropiumPhosphors, nuclear control rods 100%
FluorsparManufacture of aluminum, cement, steel, gasoline100%
GadoliniumMedical imaging, steelmaking100%
GalliumIntegrated circuits, LEDs100%
GraphiteLubricants, batteries100%
HolmiumPermanent magnets, nuclear control rods100%
IndiumLiquid crystal display screens 100%
LanthanumCatalysts, ceramics, glass, polishing compounds100%
LutetiumScintillators for medical imaging, cancer therapies 100%
ManganeseSteelmaking, batteries 100%
NeodymiumRubber catalysts, medical, industrial lasers 100%
NiobiumSteel, superalloys100%
PraseodymiumPermanent magnets, batteries, aerospace alloys100%
RubidiumResearch, development in electronics 100%
SamariumCancer treatment, absorber in nuclear reactors 100%
ScandiumAlloys, ceramics, fuel cells100%
TantalumElectronic components, superalloys100%
TerbiumPermanent magnets, fiber optics, lasers100%
ThuliumMetal alloys, lasers 100%
YtterbiumCatalysts, scintillometers, lasers, metallurgy 100%
YttriumCeramic, catalysts, lasers, metallurgy, phosphors 100%
IridiumCoating of anodes for electrochemical processesNo data available
RhodiumCatalytic converters, electrical componentsNo data available
RutheniumElectrical contacts, chip resistors in computersNo data available
HafniumNuclear control rods, alloysNet exporter

The challenge for the U.S. is that the local production of these raw materials is extremely limited.

For instance, in 2021 there was only one operating nickel mine in the country, the Eagle mine in Michigan. The facility ships its concentrates abroad for refining and is scheduled to close in 2025. Likewise, the country only hosted one lithium mine, the Silver Peak Mine in Nevada.

At the same time, most of the country’s supply of critical minerals depends on countries that have historically competed with America.

China’s Dominance in Minerals

Perhaps unsurprisingly, China is the single largest supply source of mineral commodities for the United States.

Cesium, a critical metal used in a wide range of manufacturing, is one example. There are only three pegmatite mines in the world that can produce cesium, and all were controlled by Chinese companies in 2021.

Furthermore, China refines nearly 90% of the world’s rare earths. Despite the name, these elements are abundant on the Earth’s crust and make up the majority of listed critical minerals. They are essential for a variety of products like EVs, advanced ceramics, computers, smartphones, wind turbines, monitors, and fiber optics.

After China, the next largest source of mineral commodities to the United States has been Canada, which provided the United States with 16 different elements in 2021.

The Rising Demand for Critical Minerals

As the world’s clean energy transitions gather pace, demand for critical minerals is expected to grow quickly.

According to the International Energy Association, the rise of low-carbon power generation is projected to triple mineral demand from this sector by 2040.

The shift to a sustainable economy is important, and consequently, securing the critical minerals necessary for it is just as vital.

Click for Comments

Energy

Visualizing China’s Dominance in Clean Energy Metals

Despite being the world’s biggest carbon emitter, China is also a key producer of most of the critical minerals for the green revolution.

Published

on

Visualizing China’s Dominance in Clean Energy Metals

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Renewable sources of energy are expected to replace fossil fuels over the coming decades, and this large-scale transition will have a downstream effect on the demand of raw materials. More green energy means more wind turbines, solar panels, and batteries needed, and more clean energy metals necessary to build these technologies.

This visualization, based on data from the International Energy Agency (IEA), illustrates where the extraction and processing of key metals for the green revolution take place.

It shows that despite being the world’s biggest carbon polluter, China is also the largest producer of most of the world’s critical minerals for the green revolution.

Where Clean Energy Metals are Produced

China produces 60% of all rare earth elements used as components in high technology devices, including smartphones and computers.

The country also has a 13% share of the lithium production market, which is still dominated by Australia (52%) and Chile (22%). The highly reactive element is key to producing rechargeable batteries for mobile phones, laptops, and electric vehicles.

China's ShareExtractionProcessing
Copper 8%40%
Nickel 5%35%
Cobalt 1.5%65%
Rare Earths 60%87%
Lithium13%58%

But even more than extraction, China is the dominant economy when it comes to processing operations. The country’s share of refining is around 35% for nickel, 58% for lithium, 65% for cobalt, and 87% for rare earth elements.

Despite being the largest economy in the world, the U.S. does not appear among the largest producers of any of the metals listed. To shorten the gap, the Biden administration recently launched an executive order to review the American strategy for critical and strategic materials.

It’s also worth noting that Russia also does not appear among the top producers when it comes to clean energy metals, despite being one of the world’s leading producers of minerals like copper, iron, and palladium.

Low Regulation in the Clean Metal Supply Chain

While China leads all countries in terms of cobalt processing, the metal itself is primarily extracted in the Democratic Republic of Congo (DRC). Still, Chinese interests own 15 of the 17 industrial cobalt operations in the DRC, according to a data analysis by The New York Times and Benchmark Mineral Intelligence.

Unfortunately, the DRC’s cobalt production has been criticized due to reports of corruption and lack of regulation.

Part of the Congolese cobalt comes from artisanal mines with low regulation. Of the 255,000 Congolese artisanal miners, an estimated 40,000 are children, some as young as six years old.

The Rise of Clean Energy Metals

The necessary shift from fossil fuels to renewable energy opens up interesting questions about how geopolitics, and these supply chains, will be affected.

In the race to secure raw materials needed for the green revolution, new world powers could emerge as demand for clean energy metals grows.

For now, China has the lead.

Continue Reading

Energy

The Periodic Table of Commodity Returns (2012-2021)

Energy fuels led the way as commodity prices surged in 2021, with only precious metals providing negative returns.

Published

on

commodity returns 2021 preview

The Periodic Table of Commodity Returns (2022 Edition)

For investors, 2021 was a year in which nearly every asset class finished in the green, with commodities providing some of the best returns.

The S&P Goldman Sachs Commodity Index (GSCI) was the third best-performing asset class in 2021, returning 37.1% and beating out real estate and all major equity indices.

This graphic from U.S. Global Investors tracks individual commodity returns over the past decade, ranking them based on their individual performance each year.

Commodity Prices Surge in 2021

After a strong performance from commodities (metals especially) in the year prior, 2021 was all about energy commodities.

The top three performers for 2021 were energy fuels, with coal providing the single best annual return of any commodity over the past 10 years at 160.6%. According to U.S. Global Investors, coal was also the least volatile commodity of 2021, meaning investors had a smooth ride as the fossil fuel surged in price.

Commodity2021 Returns
Coal160.61%
Crude Oil55.01%
Gas46.91%
Aluminum42.18%
Zinc31.53%
Nickel26.14%
Copper25.70%
Corn22.57%
Wheat20.34%
Lead18.32%
Gold-3.64%
Platinum-9.64%
Silver-11.72%
Palladium-22.21%

Source: U.S. Global Investors

The only commodities in the red this year were precious metals, which failed to stay positive despite rising inflation across goods and asset prices. Gold and silver had returns of -3.6% and -11.7% respectively, with platinum returning -9.6% and palladium, the worst performing commodity of 2021, at -22.2%.

Aside from the precious metals, every other commodity managed double-digit positive returns, with four commodities (crude oil, coal, aluminum, and wheat) having their best single-year performances of the past decade.

Energy Commodities Outperform as the World Reopens

The partial resumption of travel and the reopening of businesses in 2021 were both powerful catalysts that fueled the price rise of energy commodities.

After crude oil’s dip into negative prices in April 2020, black gold had a strong comeback in 2021 as it returned 55.01% while being the most volatile commodity of the year.

Natural gas prices also rose significantly (46.91%), with the UK and Europe’s natural gas prices rising even more as supply constraints came up against the winter demand surge.

Energy commodity returns 2021

Despite being the second worst performer of 2020 with the clean energy transition on the horizon, coal was 2021’s best commodity.

High electricity demand saw coal return in style, especially in China which accounts for one-third of global coal consumption.

Base Metals Beat out Precious Metals

2021 was a tale of two metals, as precious metals and base metals had opposing returns.

Copper, nickel, zinc, aluminum, and lead, all essential for the clean energy transition, kept up last year’s positive returns as the EV batteries and renewable energy technologies caught investors’ attention.

Demand for these energy metals looks set to continue in 2022, with Tesla having already signed a $1.5 billion deal for 75,000 tonnes of nickel with Talon Metals.

Metals price performance 2021

On the other end of the spectrum, precious metals simply sunk like a rock last year.

Investors turned to equities, real estate, and even cryptocurrencies to preserve and grow their investments, rather than the traditionally favorable gold (-3.64%) and silver (-11.72%). Platinum and palladium also lagged behind other commodities, only returning -9.64% and -22.21% respectively.

Grains Bring Steady Gains

In a year of over and underperformers, grains kept up their steady track record and notched their fifth year in a row of positive returns.

Both corn and wheat provided double-digit returns, with corn reaching eight-year highs and wheat reaching prices not seen in over nine years. Overall, these two grains followed 2021’s trend of increasing food prices, as the UN Food and Agriculture Organization’s food price index reached a 10-year high, rising by 17.8% over the course of the year.

Grains price performance 2021

As inflation across commodities, assets, and consumer goods surged in 2021, investors will now be keeping a sharp eye for a pullback in 2022. We’ll have to wait and see whether or not the Fed’s plans to increase rates and taper asset purchases will manage to provide price stability in commodities.

Continue Reading

Subscribe

Popular