Infographic: The Future of Gold Exploration is Under Cover
Connect with us

Mining

The Future of Gold Exploration is Under Cover

Published

on

The Future of Gold Exploration is Under Cover

The Future of Gold Exploration is Under Cover

Over billions of years, extraordinary amounts of gold and other metals were deposited and spread throughout the Earth’s crust. Humans have been searching for these rich deposits for centuries, and advances in geoscience and technology have helped us become more adept at finding them over time.

However, even with today’s advancements – almost all early-stage prospecting methods are still based on the same key principle: trying to find areas of exposed bedrock, called outcrops, that indicate an orebody is near.

But such outcrops only form in certain circumstances – and what happens when a geological system doesn’t come in contact directly with the surface?

The Problem of Cover

Today’s infographic comes to us from Nevada Exploration, and it identifies the problem behind finding these “hidden” deposits that do not leave a helpful trail of clues on the surface.

Instead of having outcrops where rocks can be readily sampled, these deposits are trapped underneath large amounts of soil and gravel. Geologists call this a covered setting, where they must first find a way to “see through” the cover in order to identify what geological systems really exist below.

Seeing through cover can be expensive and difficult to do, but it also has big potential upside.

There is no reason not to assume as much gold still exists as has been mined in the past, but prospectors, explorationists, and geologists have found the easy gold.

– Dr. Richard Goldfarb, Ph.D., United States Geologic Survey

In fact, many geologists think that the next game-changing gold deposit could be found under cover.

Exploration 2.0

For explorers, it is no secret that the cost per discovery is going up dramatically over time. The reality is that traditional exploration methods are achieving diminishing returns, and as a result companies are settling for lower grade deposits, more complex geological settings, and politically questionable jurisdictions.

Minex Consulting says that between 2007-2016, there has been $65 billion spent globally on gold exploration with only $30 billion worth of discoveries to show for it. Those aren’t exactly inspiring economics for future gold explorers.

But for every industry problem, there is often a precedent to be found elsewhere – and an interesting situation that is analogous was faced by the oil exploration industry years ago. They had reached diminishing returns with shallow water deposits, and developed technology to go deeper. Suddenly, monster deposits were being found again.

Experts involved in mineral exploration see the same thing happening with cover.

With the transition to under cover exploration, the minerals industry is undergoing a transformation much like the petroleum industry transformed to deep sea exploration some decades ago.

– Cam McCuaig, Principal Geoscientist, BHP Billiton

In other words: whoever can figure out how to explore under cover could be reaping big benefits.

The Prize

In the world’s most prolific gold jurisdictions, there are massive amounts of land that have not yet been explored because of cover. In Canada and in Australia, over 70% of land is covered. In Nevada, which produces the most gold ounces per square kilometer, about 55% of land is covered.

Interestingly, Nevada has produced 225 million oz of gold to date, but the majority of these discoveries have come from outcrop clues on the surface. Imagine what gold could be hidden under soil and gravel within the valleys of the state.

Global data so far suggests that deposits discovered under cover tend to be 2-4x bigger.

Exploring Under Cover

While the idea of unlocking this potential is extremely exciting, it also poses a significant technical challenge.

Conventional tools are poorly suited to covered settings, and existing techniques for systematic exploration don’t work. The end result is high-risk, high-cost exploration.

To successfully explore through cover, companies need:

  • New technology to see through cover
  • A way to lower the costs of testing targets
  • A way to directly test covered bedrock

So far, a few ideas have been pioneered for seeing through cover – and it will be interesting to see what results they bring in.

Biogeochemistry: In Australia, explorers are using biogeochemistry as a hint to see what lays beneath the soil. Plants accumulate pathfinder elements in them, or even tiny amounts of gold, which allows explorers to get a hint at what lies deep below.

Hydrogeochemistry: In a place like Nevada, there are massive valleys in the middle of prolific gold districts that have remained unexplored because they are covered with hundreds of meters of gravel. Testing groundwater might be the key, because groundwater flows by gravity from mountains to deep in the valley centers. On the way, this water interacts with bedrock – and any gold deposits that are hidden beneath the surface.

Explorers are looking at other ideas as well, ranging from regional-scale mapping to adapting other oil and gas industry techniques. If any of them are able to unlock the secret of exploring through cover, it could be the catalyst for industrywide change, as well as the discovery of the monster deposits that will meet our mineral needs of the future.

Click for Comments

Technology

Visualizing the Critical Metals in a Smartphone

Smartphones can contain ~80% of the stable elements on the periodic table. This graphic details the critical metals you carry in your pocket.

Published

on

Visualizing the Critical Metals in a Smartphone

In an increasingly connected world, smartphones have become an inseparable part of our lives.

Over 60% of the world’s population owns a mobile phone and smartphone adoption continues to rise in developing countries around the world.

While each brand has its own mix of components, whether it’s a Samsung or an iPhone, most smartphones can carry roughly 80% of the stable elements on the periodic table.

But some of the vital metals to build these devices are considered at risk due to geological scarcity, geopolitical issues, and other factors.

Smartphone PartCritical Metal
Touch Screen indium
Displaylanthanum; gadolinium; praseodymium; europium; terbium; dysprosium
Electronicsnickel, gallium, tantalum
Casingnickel, magnesium
Battery lithium, nickel, cobalt
Microphone, speakers, vibration unit nickel, praseodymium, neodymium, gadolinium, terbium, dysprosium

What’s in Your Pocket?

This infographic based on data from the University of Birmingham details all the critical metals that you carry in your pocket with your smartphone.

1. Touch Screen

Screens are made up of multiple layers of glass and plastic, coated with a conductor material called indium which is highly conductive and transparent.

Indium responds when contacted by another electrical conductor, like our fingers.

When we touch the screen, an electric circuit is completed where the finger makes contact with the screen, changing the electrical charge at this location. The device registers this electrical charge as a “touch event”, then prompting a response.

2. Display

Smartphones screens display images on a liquid crystal display (LCD). Just like in most TVs and computer monitors, a phone LCD uses an electrical current to adjust the color of each pixel.

Several rare earth elements are used to produce the colors on screen.

3. Electronics

Smartphones employ multiple antenna systems, such as Bluetooth, GPS, and WiFi.

The distance between these antenna systems is usually small making it extremely difficult to achieve flawless performance. Capacitors made of the rare, hard, blue-gray metal tantalum are used for filtering and frequency tuning.

Nickel is also used in capacitors and in mobile phone electrical connections. Another silvery metal, gallium, is used in semiconductors.

4. Microphone, Speakers, Vibration Unit

Nickel is used in the microphone diaphragm (that vibrates in response to sound waves).

Alloys containing rare earths neodymium, praseodymium and gadolinium are used in the magnets contained in the speaker and microphone. Neodymium, terbium and dysprosium are also used in the vibration unit.

5. Casing

There are many materials used to make phone cases, such as plastic, aluminum, carbon fiber, and even gold. Commonly, the cases have nickel to reduce electromagnetic interference (EMI) and magnesium alloys for EMI shielding.

6. Battery

Unless you bought your smartphone a decade ago, your device most likely carries a lithium-ion battery, which is charged and discharged by lithium ions moving between the negative (anode) and positive (cathode) electrodes.

What’s Next?

Smartphones will naturally evolve as consumers look for ever-more useful features. Foldable phones, 5G technology with higher download speeds, and extra cameras are just a few of the changes expected.

As technology continues to improve, so will the demand for the metals necessary for the next generation of smartphones.

This post was originally featured on Elements

Continue Reading

Mining

Silver Through the Ages: The Uses of Silver Over Time

The uses of silver span various industries, from renewable energy to jewelry. See how the uses of silver have evolved in this infographic.

Published

on

uses of silver

Silver is one of the most versatile metals on Earth, with a unique combination of uses both as a precious and industrial metal.

Today, silver’s uses span many modern technologies, including solar panels, electric vehicles, and 5G devices. However, the uses of silver in currency, medicine, art, and jewelry have helped advance civilization, trade, and technology for thousands of years.

The Uses of Silver Over Time

The below infographic from Blackrock Silver takes us on a journey of silver’s uses through time, from the past to the future.

3,000 BC – The Middle Ages

The earliest accounts of silver can be traced to 3,000 BC in modern-day Turkey, where its mining spurred trade in the ancient Aegean and Mediterranean seas. Traders and merchants would use hacksilver—rough-cut pieces of silver—as a medium of exchange for goods and services.

Around 1,200 BC, the Ancient Greeks began refining and minting silver coins from the rich deposits found in the mines of Laurion just outside Athens. By 100 BC, modern-day Spain became the center of silver mining for the Roman Empire while silver bullion traveled along the Asian spice trade routes. By the late 1400s, Spain brought its affinity for silver to the New World where it uncovered the largest deposits of silver in history in the dusty hills of Bolivia.

Besides the uses of silver in commerce, people also recognized silver’s ability to fight bacteria. For instance, wine and food containers were often made out of silver to prevent spoilage. In addition, during breakouts of the Bubonic plague in medieval and renaissance Europe, people ate and drank with silver utensils to protect themselves from disease.

The 1800s – 2000s

New medicinal uses of silver came to light in the 19th and 20th centuries. Surgeons stitched post-operative wounds with silver sutures to reduce inflammation. In the early 1900s, doctors prescribed silver nitrate eyedrops to prevent conjunctivitis in newborn babies. Furthermore, in the 1960s, NASA developed a water purifier that dispensed silver ions to kill bacteria and purify water on its spacecraft.

The Industrial Revolution drove the onset of silver’s industrial applications. Thanks to its high light sensitivity and reflectivity, it became a key ingredient in photographic films, windows, and mirrors. Even today, skyscraper windows are often coated with silver to reflect sunlight and keep interior spaces cool.

The 2000s – Present

The uses of silver have come a long way since hacksilver and utensils, evolving with time and technology.

Silver is the most electrically conductive metal, making it a natural choice for electronic devices. Almost every electronic device with a switch or button contains silver, from smartphones to electric vehicles. Solar panels also utilize silver as a conductive layer in photovoltaic cells to transport and store electricity efficiently.

In addition, it has several medicinal applications that range from treating burn wounds and ulcers to eliminating bacteria in air conditioning systems and clothes.

Silver for the Future

Silver has always been useful to industries and technologies due to its unique properties, from its antibacterial nature to high electrical conductivity. Today, silver is critical for the next generation of renewable energy technologies.

For every age, silver proves its value.

Continue Reading

Subscribe

Popular