Fusion: Will Humanity Ever Harness Star Power?
Connect with us


Fusion: Will Humanity Ever Harness Star Power?



Fusion is the epitome of “high risk, high reward” scientific research.

If we were to ever successfully harness the forces that power the stars, mankind could have access to power that is almost literally too cheap to meter. However, reaching that goal will be a very expensive, long-term commitment – and it’s also very possible that we may never achieve a commercially viable method of fusion power generation.

Today’s video, by the talented team at Kurzgesagt, explains how fusion works, what experiments are ongoing, and the pros and cons of pursuing fusion power generation.

How Fusion Works

Fusion involves heating nuclei of atoms – usually isotopes of hydrogen – to temperatures in the millions of degrees. At extreme temperatures, atoms are stripped of their electrons and nuclei move so quickly that they overcome their “mutual repulsion”, joining together to form a heavier nucleus. This process gives off massive amounts of energy that investors and researchers hope will propel mankind into an era of cheap and abundant electricity, but without the downsides of many other forms of energy.

I would like nuclear fusion to become a practical power source. It would provide an inexhaustible supply of energy, without pollution or global warming.

– Stephen Hawking, award-winning theoretical physicist

Stars are so large that fusion occurs naturally in their cores – but here on Earth, we’re trying a number of complex methods in the hopes of replicating that process to achieve positive net energy.

The Cost of Bottling a Star

The International Thermonuclear Experimental Reactor (ITER), an experimental reactor currently being built in the south of France, will house the world’s largest ever tokamak – a doughnut-shaped reactor that uses a powerful magnetic field to confine plasma. Construction of the facility began in 2013 and is expected to cost €20 billion upon completion in 2021.

iter fusion reactor funding

Research organizations see ITER as a crucial step in realizing fusion. Though the facility is not designed to generate electricity, it would pave the way for functional reactors.

Competition is Heating Up

There are some who claim that the bureaucracy of government-funded labs is hampering the process. As a result, there is a pack of private companies, fueled by high-profile investors, looking to make commercially-viable fusion into a reality.

Tri Alpha, a company in southern California, is hoping their method of spinning magnetized plasma inside a containment vessel will be a lower-cost method of power generation than ITER. In 2015, they held super-heated hydrogen plasma in a stable state for 5 milliseconds, which is a huge deal in the world of fusion research. The company has attracted over $500 million in investment in the past 20 years, and has the backing of Microsoft co-founder, Paul Allen.

Helion Energy, located in Redmond, Washington, believes they are only a few years away from creating nuclear fusion that can be used as a source for electricity. Their reaction is created by colliding two plasma balls made of hydrogen atom cores at one million miles per hour. Helion Energy’s ongoing research is funded in part by the U.S. Department of Energy’s ARPA-E program, which the Trump administration slated for elimination. Thankfully, Helion still counts Peter Thiel’s Mithril Capital and Y Combinator as supporters.

General Fusion, located in Burnaby, B.C., is taking a different approach. Their piston-based reactor is designed to create energy bursts lasting thousandths of seconds, rather than a sustained plasma reaction. Heat recovered bursts would be used to generate electricity much like nuclear power plants, minus the long-term radioactive waste. General Fusion has attracted millions of dollars in funding, including investment from Bezos Expeditions and the Business Development Bank of Canada.

Time Horizon

Though commercially viable fusion is still a long way off, each new technological breakthrough brings us one step closer. With such a massive payoff for success, research will likely only increase as we get closer to bottling a star here on Earth.

fusion timeline

Subscribe to Visual Capitalist
Click for Comments


Visualizing the Scale of Global Fossil Fuel Production

How much oil, coal, and natural gas do we extract each year? See the scale of annual fossil fuel production in perspective.



The Scale of Global Fossil Fuel Production

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Fossil fuels have been our predominant source of energy for over a century, and the world still extracts and consumes a colossal amount of coal, oil, and gas every year.

This infographic visualizes the volume of global fossil fuel production in 2021 using data from BP’s Statistical Review of World Energy.

The Facts on Fossil Fuels

In 2021, the world produced around 8 billion tonnes of coal, 4 billion tonnes of oil, and over 4 trillion cubic meters of natural gas.

Most of the coal is used to generate electricity for our homes and offices and has a key role in steel production. Similarly, natural gas is a large source of electricity and heat for industries and buildings. Oil is primarily used by the transportation sector, in addition to petrochemical manufacturing, heating, and other end uses.

Here’s a full breakdown of coal, oil, and gas production by country in 2021.

Coal Production

If all the coal produced in 2021 were arranged in a cube, it would measure 2,141 meters (2.1km) on each side—more than 2.5 times the height of the world’s tallest building.

China produced 50% or more than four billion tonnes of the world’s coal in 2021. It’s also the largest consumer of coal, accounting for 54% of coal consumption in 2021.

Rank Country2021 Coal Production
(million tonnes)
% of Total
#1🇨🇳 China 4,126.050%
#2🇮🇳 India 811.310%
#3🇮🇩 Indonesia 614.08%
#4🇺🇸 U.S. 524.46%
#5🇦🇺 Australia 478.66%
#6🇷🇺 Russia 433.75%
#7🇿🇦 South Africa 234.53%
#8🇩🇪 Germany 126.02%
#9🇰🇿 Kazakhstan 115.71%
#10🇵🇱 Poland 107.61%
🌍 Other 600.97%

India is both the second largest producer and consumer of coal. Meanwhile, Indonesia is the world’s largest coal exporter, followed by Australia.

In the West, U.S. coal production was down 47% as compared to 2011 levels, and the descent is likely to continue with the clean energy transition.

Oil Production

In 2021, the United States, Russia, and Saudi Arabia were the three largest crude oil producers, respectively.

Rank Country2021 Oil Production
(million tonnes)
% of Total
#1🇺🇸 U.S. 711.117%
#2🇷🇺 Russia 536.413%
#3🇸🇦 Saudi Arabia 515.012%
#4🇨🇦 Canada 267.16%
#5🇮🇶 Iraq 200.85%
#6🇨🇳 China 198.95%
#7🇮🇷 Iran 167.74%
#8🇦🇪 UAE 164.44%
#9 🇧🇷 Brazil156.84%
#10🇰🇼 Kuwait 131.13%
🌍 Other 1172.028%

OPEC countries, including Saudi Arabia, made up the largest share of production at 35% or 1.5 billion tonnes of oil.

U.S. oil production has seen significant growth since 2010. In 2021, the U.S. extracted 711 million tonnes of oil, more than double the 333 million tonnes produced in 2010.

Natural Gas Production

The world produced 4,036 billion cubic meters of natural gas in 2021. The above graphic converts that into an equivalent of seven billion cubic meters of liquefied natural gas (LNG) to visualize it on the same scale as oil and gas.

Here are the top 10 producers of natural gas in 2021:

Rank Country2021 Natural Gas Production
(billion m3)
% of Total
#1🇺🇸 U.S. 934.223%
#2🇷🇺 Russia 701.717%
#3🇮🇷 Iran 256.76%
#4🇨🇳 China 209.25%
#5🇶🇦 Qatar 177.04%
#6🇨🇦 Canada 172.34%
#7🇦🇺 Australia 147.24%
#8🇸🇦 Saudi Arabia 117.33%
#9🇳🇴 Norway 114.33%
#10🇩🇿 Algeria 100.82%
🌍 Other 1106.327%

The U.S. was the largest producer, with Texas and Pennsylvania accounting for 47% of its gas production. The U.S. electric power and industrial sectors account for around one-third of domestic natural gas consumption.

Russia, the next-largest producer, was the biggest exporter of gas in 2021. It exported an estimated 210 billion cubic meters of natural gas via pipelines to Europe and China. Around 80% of Russian natural gas comes from operations in the Arctic region.

Continue Reading