Infographic: Why the Spotify IPO is Both Unusual and Intriguing
Connect with us

Technology

Why the Spotify IPO is Both Unusual and Intriguing

Published

on

Why the Spotify IPO is Both Unusual and Intriguing

Why the Spotify IPO is Both Unusual and Intriguing

The Chart of the Week is a weekly Visual Capitalist feature on Fridays.

On April 3, 2018, the music streaming service Spotify is expected to hit the public markets for the first time.

However, while IPOs are usually large, hype-driven spectacles that involve investment bankers and roadshows to financial institutions, the Spotify IPO is taking quite a different route. For a variety of reasons, this will make the Spotify IPO both an unusual and intriguing event for investors.

Here’s what’s interesting about the impending listing of the Sweden-based unicorn.

1. A Rare Breed

Despite the tech IPO being a legendary exit strategy among startup founders and venture capitalists, the reality is that today tech IPOs are few and far between.

Tech IPOs in the U.S.

By the same token, IPOs are also traditionally a way for investors to get a handle on market sentiment. With fewer tech IPOs on the books, it means that investors will look even closer to the Spotify IPO to try and gauge market frothiness.

2. An Unusual Listing

However, the Spotify IPO is not conventional in any respect.

The company was forced to IPO as a result of an impending deadline that would have entitled existing holders of convertible debt the option to “unwind” their transactions and get new convertible notes.

Further, the IPO uses an unconventional route to market – instead of the traditional investment bank and roadshow, Spotify is direct-listing its shares on the market from the pockets of existing shareholders. Based on current valuations, Spotify is the largest and highest-profile company to ever try this approach on an exchange in the United States.

On the plus side, Spotify reduces its costs by going this route. On the negative, it could lead to more volatility.

For better or worse, direct-listing shares places the company’s fate solely in the hands of John Q. Public.

3. An Upstream Battle

In 2017, Spotify shares sold for a vast range that places the company’s valuation somewhere between $6.3 billion to $20.9 billion. In a more recent private transaction, it put the valuation at closer to $23 billion.

If the company IPOs at $20 billion, as some experts expect, it’d make the Spotify IPO one of the five biggest tech listings of all-time. However, as today’s chart shows, the company still faces many challenges.

Apple, Amazon, Google, and Pandora will all remain fierce competitors, each with distinct advantages in the music market. Further, while Spotify has seen strong revenue growth, it’s also seen growing losses – and industry experts question whether the slim margins will ever amount to anything significant.

If Spotify can wrangle control of the music market and squeeze out better margins, while keeping its current growth trajectory, the Spotify IPO will be one to remember for a long time.

Subscribe to Visual Capitalist
Click for Comments

Technology

The World’s Most Used Apps, by Downstream Traffic

Of the millions of apps available around the world, just a small handful of the most used apps dominate global internet traffic.

Published

on

The World’s Most Used Apps by Downstream Traffic Share

The World’s Most Used Apps, by Downstream Traffic

Of the millions of apps available around the world, just a small handful of the most used apps dominate global internet traffic.

Everything connected to the internet takes bandwidth to view. When you look at something on your smartphone—whether it’s a new message on Instagram or the next few seconds of a YouTube video—your device is downloading the data in the background.

And the bigger the files, the more bandwidth is utilized. In this chart, we break down of the most used apps by category, using Sandvine’s global mobile traffic report for 2021 Q1.

Video Drives Global Mobile Internet Traffic

The biggest files use the most data, and video files take the cake.

According to Android Central, streaming video ranges from about 0.7GB per hour of data for a 480p video to 1.5GB per hour for 1080. A 4K stream, the highest resolution currently offered by most providers, uses around 7.2GB per hour.

That’s miles bigger than audio files, where high quality 320kbps music streams use an average of just 0.12GB per hour. Social network messages are usually just a few KB, while the pictures found on them can range from a few hundred KB for a low resolution image to hundreds of MB for high resolution.

Understandably, breaking down mobile downstream traffic by app category shows that video is on top by a long shot:

CategoryDownstream Traffic Share (2021 Q1)
Video Streaming48.9%
Social Networking19.3%
Web13.1%
Messaging6.7%
Gaming4.3%
Marketplace4.1%
File Sharing1.3%
Cloud1.1%
VPN and Security0.9%
Audio0.2%

Video streaming accounts for almost half of mobile downstream traffic worldwide at 49%. Audio streaming, including music and podcasts, accounts for just 0.2%.

Comparatively, social network and web browsing combined make up one third of downstream internet traffic. Games, marketplace apps, and file sharing, despite their large file sizes, only require one-time downloads that don’t put as big of a strain on traffic as video does.

A Handful of Companies Own the Most Used Apps

Though internet traffic data is broken down by category, it’s worth noting that many apps consume multiple types of bandwidth.

For example, messaging and social network apps, like WhatsApp, Instagram, and Snapchat, allow consumers to stream video, social network, and message.

Even marketplace apps like iTunes and Google Play consume bandwidth for video and audio streaming, and together account for 6.3% of total mobile downstream traffic.

But no single app had a bigger footprint than YouTube, which accounts for 20.4% of total global downstream bandwidth.

CategoryTop Apps (Category Traffic)Category Traffic Share
Video StreamingYouTube47.9%
Video StreamingTikTok16.1%
Video StreamingFacebook Video14.6%
Video StreamingInstagram12.1%
Video StreamingNetflix4.3%
Video StreamingOther5.0%
Social NetworkingFacebook50.5%
Social NetworkingInstagram41.9%
Social NetworkingTwitter2.4%
Social NetworkingOdnoklassniki1.9%
Social NetworkingQQ0.7%
Social NetworkingOther2.9%
MessagingWhatsApp31.4%
MessagingSnapchat16.5%
MessagingFacebook VoIP14.3%
MessagingLINE12.1%
MessagingSkype4.1%
MessagingOther21.6%
WebGoogle41.2%
WebOther58.8%

The world’s tech giants had the leading app in the four biggest data streaming categories. Alphabet’s YouTube and Google made up almost half of all video streaming and web browsing traffic, while Facebook’s own app, combined with Instagram and WhatsApp, accounted for 93% of global social networking traffic and 45% of messaging traffic.

Traffic usage by app highlights the data monopoly of tech giants and internet providers. Since just a few companies account for a majority of global smartphone internet traffic, they have a lot more bartering power (and responsibility) when it comes to our general internet consumption.

Continue Reading

Technology

Visualizing the Critical Metals in a Smartphone

Smartphones can contain ~80% of the stable elements on the periodic table. This graphic details the critical metals you carry in your pocket.

Published

on

Visualizing the Critical Metals in a Smartphone

In an increasingly connected world, smartphones have become an inseparable part of our lives.

Over 60% of the world’s population owns a mobile phone and smartphone adoption continues to rise in developing countries around the world.

While each brand has its own mix of components, whether it’s a Samsung or an iPhone, most smartphones can carry roughly 80% of the stable elements on the periodic table.

But some of the vital metals to build these devices are considered at risk due to geological scarcity, geopolitical issues, and other factors.

Smartphone PartCritical Metal
Touch Screen indium
Displaylanthanum; gadolinium; praseodymium; europium; terbium; dysprosium
Electronicsnickel, gallium, tantalum
Casingnickel, magnesium
Battery lithium, nickel, cobalt
Microphone, speakers, vibration unit nickel, praseodymium, neodymium, gadolinium, terbium, dysprosium

What’s in Your Pocket?

This infographic based on data from the University of Birmingham details all the critical metals that you carry in your pocket with your smartphone.

1. Touch Screen

Screens are made up of multiple layers of glass and plastic, coated with a conductor material called indium which is highly conductive and transparent.

Indium responds when contacted by another electrical conductor, like our fingers.

When we touch the screen, an electric circuit is completed where the finger makes contact with the screen, changing the electrical charge at this location. The device registers this electrical charge as a “touch event”, then prompting a response.

2. Display

Smartphones screens display images on a liquid crystal display (LCD). Just like in most TVs and computer monitors, a phone LCD uses an electrical current to adjust the color of each pixel.

Several rare earth elements are used to produce the colors on screen.

3. Electronics

Smartphones employ multiple antenna systems, such as Bluetooth, GPS, and WiFi.

The distance between these antenna systems is usually small making it extremely difficult to achieve flawless performance. Capacitors made of the rare, hard, blue-gray metal tantalum are used for filtering and frequency tuning.

Nickel is also used in capacitors and in mobile phone electrical connections. Another silvery metal, gallium, is used in semiconductors.

4. Microphone, Speakers, Vibration Unit

Nickel is used in the microphone diaphragm (that vibrates in response to sound waves).

Alloys containing rare earths neodymium, praseodymium and gadolinium are used in the magnets contained in the speaker and microphone. Neodymium, terbium and dysprosium are also used in the vibration unit.

5. Casing

There are many materials used to make phone cases, such as plastic, aluminum, carbon fiber, and even gold. Commonly, the cases have nickel to reduce electromagnetic interference (EMI) and magnesium alloys for EMI shielding.

6. Battery

Unless you bought your smartphone a decade ago, your device most likely carries a lithium-ion battery, which is charged and discharged by lithium ions moving between the negative (anode) and positive (cathode) electrodes.

What’s Next?

Smartphones will naturally evolve as consumers look for ever-more useful features. Foldable phones, 5G technology with higher download speeds, and extra cameras are just a few of the changes expected.

As technology continues to improve, so will the demand for the metals necessary for the next generation of smartphones.

This post was originally featured on Elements

Continue Reading

Subscribe

Popular